Hydrocephalus is a common neurological disorder that leads to expansion of the cerebral ventricles and is associated with a high rate of morbidity and mortality. Most neonatal cases are of unknown etiology and are likely to have complex inheritance involving multiple genes and environmental factors. Identifying molecular mechanisms for neonatal hydrocephalus and developing noninvasive treatment modalities are high priorities. Here we use a hydrocephalic mouse model of the human ciliopathy Bardet-Biedl Syndrome (BBS) and identify a role for neural progenitors in the pathogenesis of neonatal hydrocephalus. We found that hydrocephalus in this mouse model is caused by aberrant platelet-derived growth factor receptor α (PDGFR-α) signaling, resulting in increased apoptosis and impaired proliferation of chondroitin sulfate proteoglycan 4 (also known as neuron-glial antigen 2 or NG2)(+)PDGFR-α(+) neural progenitors. Targeting this pathway with lithium treatment rescued NG2(+)PDGFR-α(+) progenitor cell proliferation in BBS mutant mice, reducing their ventricular volume. Our findings demonstrate that neural progenitors are crucial in the pathogenesis of neonatal hydrocephalus, and we identify new therapeutic targets for this common neurological disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684048 | PMC |
http://dx.doi.org/10.1038/nm.2996 | DOI Listing |
Background: Cerebral venous thrombosis (CVT) is a rare condition in children, and its description remains limited in North Africa. The objective of our study was to describe the clinical, etiological, radiological, therapeutic, and evolutionary characteristics of children with CVT in western Algeria.
Methods: This was a retrospective observational study involving children with CVT.
Animals (Basel)
January 2025
Animal Pathology Laboratory (LAPATO), Institute of Veterinary Medicine (IMV), Federal University of Pará (UFPA), Castanhal 68745-000, PA, Brazil.
Manatees are semi-social animals, with the mother-calf relationship being considered long-lasting for the species. However, some events lead to the separation of this pair. Orphaned manatee calves can be adopted by other females of the same species.
View Article and Find Full Text PDFBrain Behav
January 2025
BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates.
View Article and Find Full Text PDFInfection
November 2024
Division of Neonatology, Department of Women's and Children's Health, University of Leipzig Medical Center, Liebigstraße 20a, 04103, Leipzig, Germany.
Purpose: Ureaplasma species (spp.) are relevant contributors to preterm birth but may also cause invasive infections particularly in very immature preterm infants. This study aimed to assess the incidence of neonatal Ureaplasma infections of the central nervous system (CNS).
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Paediatrics Hemato-Oncology and Paediatric Gastroenterology, Pomeranian Medical University, 70-204 Szczecin, Poland.
Background: Hexokinase (HK) deficiency is a rare autosomal recessively inherited disease manifested by chronic nonspherocytic hemolytic anemia. Most patients present with a mild to severe course of the disease (fetal hydrocephalus, neonatal hyperbilirubinemia, severe anemia). We reviewed 37 cases of patients with hexokinase deficiency described so far, focusing on the severity of the disease, clinical presentation, treatment applied, and genetic test results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!