The search for an effective and reliable oral insulin delivery system has been a major challenge facing pharmaceutical scientists for over many decades. Even though innumerable carrier systems that protect insulin from degradation in the GIT with improved membrane permeability and biological activity have been developed, yet a clinically acceptable device is not available for human application. Efforts in this direction are continuing at an accelerated speed. One of the preferred systems widely explored is based on polymeric hydrogels that protect insulin from enzymatic degradation in acidic stomach and delivers effectively in the intestine. Swelling and deswelling mechanisms of the hydrogel under varying pH conditions of the body control the release of insulin. The micro and nanoparticle (NP) hydrogel devices based on biopolymers have been widely explored, but their applications in human insulin therapy are still far from satisfactory. The present review highlights the recent findings on hydrogel-based devices for oral delivery of insulin. Literature data are critically assessed and results from different laboratories are compared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2012.11.005 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
NIT Rourkela: National Institute of Technology Rourkela, Department of Chemistry, NIT Rourkela, 769008, Rourkela, INDIA.
Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFMater Horiz
January 2025
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.
Conductive hydrogels with stable sensing performance are highly required in soft electronic devices. However, these hydrogels tend to solidify and experience structural damage at sub-zero temperatures, leading to material breakdown and device malfunction. The main challenge lies in effectively designing the micro/nano-structure to enhance mechanical properties and stable strain sensing while preventing freezing in hydrogels.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments.
View Article and Find Full Text PDFBiophys Rev
December 2024
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.
Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!