Hyperpolarized (3)He diffusion experiments have been shown to be sensitive to changes in acinar structure due to emphysematous lung disease. Extracting quantitative information about lung microstructure from the diffusion signal is complicated due its dependence on a number of factors including diffusion time and the complex branching acinar geometry. A theoretical model (cylinder model) has been proposed as a means of estimating acinar airway dimensions from measured diffusivities. This model assumes that the effects of acinar branching geometry and finite airway length upon (3)He diffusion behaviour are negligible. In this work, we use finite element simulations of diffusion in a model of branching alveolar ducts to investigate in detail the effects of acinar branching structure and finite airway length on short-range (3)He diffusion measurements. The results show that branching effects have a significant influence upon (3)He diffusivity, even at short diffusion times. The expressions of the cylinder model theory do not account for significant dependences upon diffusion time, branching geometry and airway length, as a consequence of the oversimplified geometrical model used. The effect of diffusion time on (3)He ADC was also investigated through experiments with healthy human volunteers. The results demonstrate that the cylinder model can produce inaccurate estimates of the airway dimensions as a consequence of incompletely accounting for the diffusion-time dependence in the model equations and confirmed the predicted limitations of the cylinder model for reliable lung morphometry measurements. The results and models presented in this work may help in the development of a more realistic theoretical framework for 'in vivo lung morphometry' using (3)He diffusion MR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2012.10.008DOI Listing

Publication Analysis

Top Keywords

diffusion time
16
3he diffusion
16
cylinder model
16
diffusion
12
airway length
12
model
9
branching structure
8
measurements models
8
short-range 3he
8
airway dimensions
8

Similar Publications

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Background: Emerging evidence suggests that there are morphological and physiological changes to the vastus lateralis after an anterior cruciate ligament (ACL) tear. However, it is unclear whether these alterations are limited to just the vastus lateralis or are more representative of widespread changes across the thigh musculature and/or if these changes precede reconstruction. The purpose of this study was to determine T1ρ relaxation time, a measure of extracellular matrix organization in muscle, and physiological cross-sectional area (PCSA) for muscles of the quadriceps and hamstrings of the ACL-deficient and contralateral limbs soon after ACL injury.

View Article and Find Full Text PDF

YOLOSeg with applications to wafer die particle defect segmentation.

Sci Rep

January 2025

Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, 243, Taiwan.

This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance segmentation model, with applications to segment small particle defects embedded on a wafer die. YOLOSeg uses YOLOv5s as the basis and extends a UNet-like structure to form the segmentation head. YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding polygons.

View Article and Find Full Text PDF

SMC motor proteins extrude DNA asymmetrically and can switch directions.

Cell

January 2025

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands. Electronic address:

Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear.

View Article and Find Full Text PDF

The effect of the foreign body response on drug elution from subdermal delivery systems.

Biomaterials

January 2025

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA. Electronic address:

Contrasting findings are presented in the literature regarding the influence of foreign body response (FBR) on drug release from implantable drug delivery systems. To this end, here we sought direct evidence of the effect of the fibrotic tissue on subcutaneous drug release from long-acting drug delivery implants. Specifically, we investigated the pharmacokinetic impact of fibrotic encapsulation on a small molecule drug, islatravir (293 Da), and a large protein, IgG (150 kDa), administered via biocompatible implants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!