Background/aims: Migration of dendritic cells (DCs), antigen presenting cells that link innate and adaptive immunity, is critical for initiation of immune responses. DC migration is controlled by the activity of different ion channels, which mediate Ca(2+) flux or set the membrane potential. Moreover, cell migration requires local volume changes at the leading and rear end of travelling cells, which might be mediated by the fluxes of osmotically active solutes, including Cl(-). The present study explored the functional expression, regulation and role of Cl(-) channels in mouse bone marrow-derived DCs.
Methods/results: In whole-cell patch clamp experiments we detected outwardly rectifying Cl(-) currents which were activated by elevation of cytosolic Ca(2+), triggered either by ionomycin in the presence of extracellular Ca(2+) or mobilization of Ca(2+) by IP(3) Most importantly, Ca(2+)-activated Cl(-) channels (CaCCs) were activated by CCL21 (75 ng/ml), an agonist of the chemokine receptor CCR7. The currents showed sensitivity to Cl(-) channel blockers such as tannic acid (10 µM), digallic acid (100 µM) and more specific CaCC blockers niflumic acid (300 µM) and AO1 (20 µM). According to RT-PCR and Western blot data, Anoctamin 6 (ANO6) is expressed in DCs. Knock-down of ANO6 with siRNA led to inhibition of CaCC currents in DCs. Moreover, chemokine-induced migration of both immature and LPS-matured DCs was reduced upon ANO6 knock-down.
Conclusion: Our data identify ANO6 as a Ca(2+)-activated Cl(-) channel in mouse DCs, show its activation upon chemokine receptor ligation and establish an important role of ANO6 in chemokine-induced DC migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000343321 | DOI Listing |
Redox Biol
January 2025
Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:
Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.
View Article and Find Full Text PDFJCI Insight
January 2025
Center for Precision Medicine, Department of Medicine, and.
The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!