Alterations in metabolism could be due to cell-autonomous effects associated with altered expression of Clock in central nervous system feeding centers and/or peripheral tissues involved in metabolism. Clock mutant mice are hyperphagic and obese, which indicates that Clock is related to obesity. In the present study, we used intracerebroventricular injection of recombinant adenoviral vector harboring Clock genes to explore the role of Clock on diet induced obesity and the mechanisms involved in leptin resistance and leptin signaling in mice. The results demonstrated that expression of Clock in the arcuate nucleus of diet induced obesity mice was down-regulated. The recombinant adenoviral vector harboring Clock genes could reduce obesity indexes of diet induced obesity mice including body weight, BMI and total fat mass, attenuate hyperleptinemia, increase leptin sensitivity and decrease accumulated suppressor of cytokine signaling-3 in the arcuate nucleus. These results indicate that Clock plays an important role on obesity, which may be involved in leptin resistance and regulation of suppressor of cytokine signaling-3 in arcuate nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2012.11.007DOI Listing

Publication Analysis

Top Keywords

leptin resistance
12
diet induced
12
induced obesity
12
arcuate nucleus
12
clock
8
expression clock
8
recombinant adenoviral
8
adenoviral vector
8
vector harboring
8
harboring clock
8

Similar Publications

Background: Chemoresistance is a major cause of treatment failure in advanced colorectal cancer (CRC), severely impacting patient survival and quality of life. While conventional chemotherapy regimens can somewhat control tumor progression, their effectiveness is frequently compromised by the development of drug resistance in cancer cells. The aim of this study is to verify and elucidate the specific mechanisms by which leptin enhances chemosensitivity in CRC, providing valuable insights for the development of new combination chemotherapy options.

View Article and Find Full Text PDF

Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring.

Cell Metab

January 2025

Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan. Electronic address:

Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) poses a significant risk for developing type 2 diabetes mellitus (T2D) and exhibits heterogeneity. However, understanding the link between different types of post-GDM individuals without diabetes and their progression to T2D is crucial to advance personalised medicine approaches.

Materials And Methods: We employed a discovery-based unsupervised machine learning clustering method to generate clustering models for analysing metabolomics, clinical, and biochemical datasets.

View Article and Find Full Text PDF

Background: Medications targeting the leptin and Apolipoprotein CIII (APOC3) pathways are currently under development for the treatment of hypertriglyceridaemia. Given that both pathways are implicated in triglyceride regulation, it is unknown whether they function independently or interact under physiological conditions and under acute or long-term energy deficiency.

Methods: APOC3 levels and their association with circulating lipids and lipoproteins were evaluated in the context of two randomised controlled studies.

View Article and Find Full Text PDF

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!