Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

J Hazard Mater

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada.

Published: December 2012

The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.10.042DOI Listing

Publication Analysis

Top Keywords

adsorption performance
12
tio2 coated
12
adsorption
11
performance titanium
8
titanium dioxide
8
dioxide tio2
8
air filters
8
volatile organic
8
organic compounds
8
relative humidity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!