Radioresistance of rat glioma cell lines cultured as multicellular spheroids. Correlation with electrical cell-to-cell-coupling.

Strahlenther Onkol

Kernforschungszentrum Karlsruhe, Hauptabteilung Sicherheit/Biophysik.

Published: February 1990

Two chemically induced rat glioblastomas, RG2 and F98, were cultured as monolayers and as multicellular spheroids and subjected to Co-gamma-irradiation. In parallel, intercellular communication between cells was determined as electrical coupling between neighbouring cells using micro-electrode techniques. A third glioblastoma with known radiobiological response (9L) was assayed with respect to intercellular communication and included into this analysis. Electrical coupling was low for RG2, intermediate for F98, and high for 9L. Radioresistance of spheroids, as expressed in terms of the mean inactivation dose computed from the survival curves increased in the same direction (RG2: 2.4 Gy; F98: 5.1 Gy; 9L: 6.5 Gy). A comparison of these parameters demonstrates a correlation between solid tumor radioresistance and gap-junctional cell-to-cell communication, at least for the class of glioblastomas analysed in this study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

multicellular spheroids
8
rg2 f98
8
intercellular communication
8
electrical coupling
8
radioresistance rat
4
rat glioma
4
glioma cell
4
cell lines
4
lines cultured
4
cultured multicellular
4

Similar Publications

In recent years, three-dimensional (3D) cultures of tumor cells has emerged as an important tool in cancer research. The significance of 3D cultures, such as tumor spheroids, lies in their ability to mimic the in vivo tumor microenvironment more precisely, offering a nuanced understanding of immune responses within the context of tumor progression. In fact, the infiltration of cytotoxic lymphocytes is key to determining patients' prognosis in several types of cancer and response to immunotherapy.

View Article and Find Full Text PDF

Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.

View Article and Find Full Text PDF

Protocol for the Generation and 3D Culture of Fluorescently Labeled Multicellular Spheroids.

Methods Mol Biol

January 2025

Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.

Spheroid culture systems have been extensively used to model the three-dimensional (3D) behavior of cells in vitro. Traditionally, spheroids consist of a single cell type, limiting their ability to fully recapitulate the complex inter-cellular interactions observed in vivo. Here we describe a protocol for generating cocultured spheroids composed of two distinct cell types, embedded within a 3D extracellular matrix (ECM) to better study cellular interactions.

View Article and Find Full Text PDF

Single-cell proteomics (SCP) promises to revolutionize biomedicine by providing an unparalleled view of the proteome in individual cells. Here, we present a high-sensitivity SCP workflow named Chip-Tip, identifying >5,000 proteins in individual HeLa cells. It also facilitated direct detection of post-translational modifications in single cells, making the need for specific post-translational modification-enrichment unnecessary.

View Article and Find Full Text PDF

A Hydrogel-Based Multiplex Coculture Platform for Retinal Component Cells.

ACS Appl Bio Mater

January 2025

Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey.

There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!