Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14).

J Colloid Interface Sci

Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 311 Ferst Dr. NW, Atlanta, GA 30332, USA. Electronic address:

Published: February 2013

Metal-organic frameworks (MOFs) are attractive microporous materials for adsorption separations due to their extraordinary structures and impressive high surface areas. Catenation, or framework interpenetration, can significantly impact the crystal stability and improve the adsorption interactions. This interesting approach was used to obtain {[Cu(3)(BTB)(2)(H(2)O)(3)]·(DMF)(9)(H(2)O)(2)} (MOF-14) as a microporous material with a high surface area and large pore volume, which are desirable parameters for adsorption applications. Here, we report a detailed study of this catenated material with its gas adsorption properties. The potential for adsorption separations is evaluated by measuring pure-component adsorption isotherms for carbon dioxide, methane, and nitrogen. The Ideal Adsorbed Solution Theory (IAST) was used to evaluate adsorption selectivities of MOF-14 for CO(2)/CH(4) and CO(2)/N(2) equimolar mixtures. In addition, water adsorption and the impact of exposure on structural degradation are reported. Compared to other open-metal site MOFs, MOF-14 adsorbs significantly less water. This interwoven MOF is a promising competitor to other MOF materials in the gas separation field due to low interactions with water and high selectivity for CO(2) over N(2).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.10.018DOI Listing

Publication Analysis

Top Keywords

adsorption
9
adsorption separations
8
high surface
8
adsorption study
4
study co2
4
co2 ch4
4
ch4 h2o
4
h2o interwoven
4
interwoven copper
4
copper carboxylate
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.

View Article and Find Full Text PDF

This study focuses on the synthesis, characterization, and evaluation of the photocatalytic efficiency of bismuth-based metal-organic frameworks (Bi-MOFs) and their derivatives, specifically Ag/Bi-MOF and NH /Ag/Bi-MOF, in the degradation of tetracycline (TC) and sulfamethoxazole (SMX) under visible light irradiation. Bi-MOFs are promising photocatalysts due to their large surface area, tunable porosity, and unique electronic properties that are favorable for visible light absorption. In this study, Bi-MOFs were synthesized using a solvothermal method, with the incorporation of silver (Ag) and ammonium (NH ) ions to enhance their photocatalytic performance.

View Article and Find Full Text PDF

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!