This paper presents ethnographic data to support the double bind model of communication most recently described by Alexander. Using traumatic head injury as an example, an interactive view of paradoxical communication was taken focusing on the disabled, the family, and service providers. A brief discussion of head injury in the U.S. is followed by a delineation of the principles of the model. A number of specific binds are described based on perceptions of caregiving, private and public performance of the head injured, the invisibility of the disability, and economic disincentives to employment of the disabled. The paper expands the model based on the disability experience including illustrations of split binds, contextual communication and biological aspects of double bind.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0277-9536(90)90213-c | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.
View Article and Find Full Text PDFCurr Genet
January 2025
Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast.
View Article and Find Full Text PDFCancer Discov
January 2025
Memorial Sloan Kettering Cancer Center, New York, NY, United States.
The role of ubiquitin-mediated degradation mechanisms in the pathogenesis of diffuse large B cell (DLBCL) and follicular lymphoma (FL) is not completely understood. We show that conditional deletion of the E3 ubiquitin ligase Fbxo45 in germinal center B-cells results in B-cell lymphomagenesis in homozygous (100%) and heterozygous (48%) mice. Mechanistically, FBXO45 targets the RHO guanine exchange factor ARHGEF2/GEF-H1 for ubiquitin-mediated degradation.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!