As principal degrading enzymes of the extracellular matrix, metalloproteinases (MPs) contribute to various pathologies and represent a family of promising drug targets and biomarker candidates. However, multiple proteases and endogenous inhibitors interact to govern MP activity, often leading to highly context-dependent protease function that unfortunately has impeded associated clinical utility. We present a method for rapidly assessing the activity of multiple specific proteases in small volumes (<20 μL) of complex biological fluids such as clinical samples that are available only in very limited amounts. It uses a droplet-based microfluidic platform that injects the sample into thousands of picoliter-scale droplets from a barcoded droplet library (DL) containing mixtures of unique, moderately selective FRET-based protease substrates and specific inhibitors and monitors hundreds of the reactions thus initiated simultaneously by tracking these droplets. Specific protease activities in the sample are then inferred from the reaction rates using a deconvolution technique, proteolytic activity matrix analysis (PrAMA). Using a nine-member DL with three inhibitors and four FRET substrates, we applied the method to the peritoneal fluid of subjects with and without the invasive disease endometriosis. The results showed clear and physiologically relevant differences with disease, in particular, decreased MMP-2 and ADAM-9 activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566300PMC
http://dx.doi.org/10.1021/ja307866zDOI Listing

Publication Analysis

Top Keywords

multiplexed protease
4
protease activity
4
activity assay
4
assay low-volume
4
low-volume clinical
4
clinical samples
4
samples droplet-based
4
droplet-based microfluidics
4
microfluidics application
4
application endometriosis
4

Similar Publications

Breath biopsy is emerging as a rapid and non-invasive diagnostic tool that links exhaled chemical signatures with specific medical conditions. Despite its potential, clinical translation remains limited by the challenge of reliably detecting endogenous, disease-specific biomarkers in breath. Synthetic biomarkers represent an emerging paradigm for precision diagnostics such that they amplify activity-based biochemical signals associated with disease fingerprints.

View Article and Find Full Text PDF

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF

With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section.

View Article and Find Full Text PDF

Setting up the correct diagnosis of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the bladder, is a challenge, as there are neither diagnostic criteria nor reliable and non-invasive disease biomarkers available. The aim of the present study was to simultaneously determine matched serum- and urine-derived biomarkers of IC/BPS, which would provide additional insights into disease mechanisms and set the basis for further biomarker validation. Our study included 12 female patients with IC/BPS and 12 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!