Background: In this study we investigated the effects of different dosages of ligustrazine (tetramethylpyrazine, Tmp) on soleus function and sarco(endo)plasmatic reticulum Ca(2+)-ATPase (SERCA) activity in 14-d hindlimb-unloaded (HU) rats.
Methods: Female Sprague-Dawley rats were randomly divided into 4 groups (8 rats in each group): synchronous control (CON); HU plus intragastric water instillation (HU-W); HU plus different dosages of instilled Tmp (high: 42.53 mg x kg(-1), HU-TmpH; low: 21.15 mg x kg(-1), HU-TmpL). Muscle contraction force was examined in the soleus muscle. SERCA activity was assayed according to the released inorganic phosphate content.
Results: As expected, in HU-W, soleus peak twitch tension (Pt), peak tetanic tension (P0), time to 50% peak tension (TP50), time to peak tension (TPT), time from peak tension to 50% relaxation (RT50), and SERCA activity decreased, all compared with CON. HU-TmpH Pt and P0 values were 179% and 90% above HU-W, and 187% and 124% above HU-W in HU-TmpL, respectively. TP50 and TPT values were 148% and 80% slower than HU-W with HU-TmpH and 95% and 32% in the HU-TmpL group, respectively. RT50 was slower than HU-W by 21% in HU-TmpH; SERCA activity elevated by 56% with HU-TmpH and by 72% with HU-TmpL.
Conclusions: Ligustrazine may alleviate the decrease of muscle contractile force and increase of shortening velocity in atrophied soleus, possibly by means of elevated sarcoplasmic reticulum Ca(2+)-ATPase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3357/asem.3249.2012 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
ChemMedChem
January 2025
University of Michigan Michigan Medicine, Internal Medicine, 2800 Plymouth Rd, NCRC 26-220S, 48109, Ann Arbor, UNITED STATES OF AMERICA.
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood.
View Article and Find Full Text PDFChem Biol Interact
February 2025
Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea. Electronic address:
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!