Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between -160 and -90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/-1.62 h in normal cells, to 22.38+/-0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5'-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP11A1 promoter and increased CYP11A1 mRNA stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498373PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048963PLOS

Publication Analysis

Top Keywords

theca cells
40
pcos theca
28
cyp11a1 mrna
28
mrna stability
20
normal pcos
16
cyp11a1 promoter
16
cells
14
cyp11a1
14
pcos
12
increased basal
12

Similar Publications

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Yessotoxin is one of the shellfish toxins leading to mussel farm closures in the Adriatic Sea of Italy. Two putative Gonyaulax spinifera strains GSA0501 and GSA0602 are known as yessotoxins producers, but their identities have remained elusive since 2005. To address this gap, we established five Gonyaulax strains by incubating sediments from the Adriatic Sea and subsequently isolating single cells.

View Article and Find Full Text PDF

Circulating Interleukin-6 Mediates PM-Induced Ovarian Injury by Suppressing the PPARγ Pathway.

Research (Wash D C)

December 2024

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Exposure to airborne fine particulate matter (PM) is strongly associated with poor fertility and ovarian damage. However, the mechanism underlying this remains largely unclear. Here, we found that PM markedly impaired murine ovarian reserve, decreased hormone levels, and aggravated ovarian inflammation.

View Article and Find Full Text PDF

Polycomb in female reproductive health: patterning the present and programming the future.

Reprod Fertil Dev

December 2024

Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia.

Article Synopsis
  • - Epigenetic modifications influence various biological processes, including gene expression and cell differentiation, and can be passed down through generations, affecting inherited traits and health.
  • - The ovary plays a vital role in female reproductive health by producing oocytes and hormones, and it undergoes significant epigenetic programming that is crucial for offspring well-being.
  • - Recent research highlights the importance of Polycomb proteins in regulating ovarian function and epigenetic inheritance, suggesting that further understanding of these mechanisms could improve knowledge of reproductive health issues like ovarian dysfunction and fertility disorders.
View Article and Find Full Text PDF

Folliculogenesis resumption after ovarian cortex transplantation: what is the earliest hormonal indicator?

Arch Gynecol Obstet

December 2024

Department of Assisted Reproductive Technologies and Fertility Preservation, Jeanne de Flandre Hospital, CHU Lille, 59000, Lille, France.

Introduction: Ovarian tissue cryopreservation (OTC) is recommended by scientific societies for women undergoing highly gonadotoxic cancer treatments. Following transplantation, the restoration of ovarian function is typically characterised by the resumption of spontaneous menstruation. Yet, a few studies have looked at the longitudinal hormonal variations following transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!