PNPLA3, the triacylglycerol synthesis/hydrolysis/storage dilemma, and nonalcoholic fatty liver disease.

World J Gastroenterol

Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires, National Council of Scientific and Technological Research-CONICET, Autonomous City of Buenos Aires 1427, Argentina.

Published: November 2012

Genome-wide and candidate gene association studies have identified several variants that predispose individuals to developing nonalcoholic fatty liver disease (NAFLD). However, the gene that has been consistently involved in the genetic susceptibility of NAFLD in humans is patatin-like phospholipase domain containing 3 (PNPLA3, also known as adiponutrin). A nonsynonymous single nucleotide polymorphism in PNPLA3 (rs738409 C/G, a coding variant that encodes an amino acid substitution  I148M) is significantly associated with fatty liver and histological disease severity, not only in adults but also in children. Nevertheless, how PNPLA3 influences the biology of fatty liver disease is still an open question. A recent article describes new aspects about PNPLA3 gene/protein function and suggests that the  I148M variant promotes hepatic lipid synthesis due to a gain of function. We revise here the published data about the role of the  I148M variant in lipogenesis/lipolysis, and suggest putative areas of future research. For instance we explored in silico whether the rs738409 C or G alleles have the ability to modify miRNA binding sites and miRNA gene regulation, and we found that prediction of PNPLA3 target miRNAs shows two miRNAs potentially interacting in the 3'UTR region (hsa-miR-769-3p and hsa-miR-516a-3p). In addition, interesting unanswered questions remain to be explored. For example, PNPLA3 lies between two CCCTC-binding factor-bound sites that could be tested for insulator activity, and an intronic histone 3 lysine 4 trimethylation peak predicts an enhancer element, corroborated by the DNase I hypersensitivity site peak. Finally, an interaction between PNPLA3 and glycerol-3-phosphate acyltransferase 2 is suggested by data miming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496879PMC
http://dx.doi.org/10.3748/wjg.v18.i42.6018DOI Listing

Publication Analysis

Top Keywords

fatty liver
16
liver disease
12
pnpla3
8
nonalcoholic fatty
8
the  i148m
8
i148m variant
8
pnpla3 triacylglycerol
4
triacylglycerol synthesis/hydrolysis/storage
4
synthesis/hydrolysis/storage dilemma
4
dilemma nonalcoholic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!