Flagellar biogenesis in the gastric pathogen Helicobacter pylori involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in flhA, which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the H. pylori strain used, insertion mutations in flhA had different effects on expression of RpoN-dependent genes. Mutations in flhA in H. pylori strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (ΔflhA), or within the gene following codon 77 (designated flhA77) or codon 454 (designated flhA454), which could allow expression of truncated FlhA proteins. All three flhA mutations severely inhibited transcription of the RpoN-dependent genes flaB and flgE in H. pylori B128. In contrast, levels of flaB and flgE transcripts in H. pylori ATCC 43504 bearing either flhA77 or flhA454, but not ΔflhA, were ~60 % of wild-type levels. The FlhA(454) variant was detected in membrane fractions prepared from H. pylori ATCC 43504 but not H. pylori B128, which may account for the phenotypic differences in the flhA mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an flaB'-'xylE reporter gene in H. pylori ATCC 43504 bearing the flhA77 allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of flaB is not only regulated at the level of transcription but also regulated post-transcriptionally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542725PMC
http://dx.doi.org/10.1099/mic.0.059063-0DOI Listing

Publication Analysis

Top Keywords

transcription rpon-dependent
16
rpon-dependent genes
16
atcc 43504
16
mutations flha
12
pylori atcc
12
pylori
9
insertion mutations
8
helicobacter pylori
8
flha
8
flha mutations
8

Similar Publications

Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni.

Nat Commun

June 2024

University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.

Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs).

View Article and Find Full Text PDF

Transcription factor expression levels and environmental signals constrain transcription factor innovation.

Microbiology (Reading)

August 2023

Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related.

View Article and Find Full Text PDF

The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate.

View Article and Find Full Text PDF

The polysaccharide Bep is essential for in vitro biofilm formation of the opportunistic pathogen Burkholderia cenocepacia. We found that the Burkholderia diffusible signaling factor (BDSF) quorum sensing receptor RpfR is a negative regulator of the bep gene cluster in B. cenocepacia.

View Article and Find Full Text PDF

Genes Involved in Biofilm Matrix Formation of the Food Spoiler PF07.

Front Microbiol

June 2022

School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.

The extracellular matrix is essential for the biofilm formation of food spoilers. PF07 is a previous isolate from spoiled marine fish; however, the genes involved in the extracellular matrix formation of PF07 biofilms remain poorly defined. In this study, PF07 formed a wrinkled macrocolony biofilm through the high production of extracellular matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!