We describe a technique that measures ultralow interfacial tensions using paramagnetic spheres in a co-flow microfluidic device designed with a magnetic section. Our method involves tuning the distance between the co-flowing interface and the magnet's center, and observing the behavior of the spheres as they approach the liquid-liquid interface-the particles either pass through or are trapped by the interface. Using threshold values of the magnet-to-interface distance, we make estimates of the two-fluid interfacial tension. We demonstrate the effectiveness of this technique for measuring very low interfacial tensions, O(10(-6)-10(-5)) N m(-1), by testing solutions of different surfactant concentrations, and we show that our results are comparable with measurements made using a spinning drop tensiometer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2lc40797c | DOI Listing |
Talanta
December 2024
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China. Electronic address:
Alzheimer's disease (AD) significantly impacts the well-being of older people around the world. However, the accurate detection of glycosylated amyloid-beta (Aβ) proteins, which serve as important biomarkers for AD, remains challenging due to their extremely low levels. To address these issues, we proposed a method for fabricating a flexible and stable sensor platform based on an innovative boronic acid-based covalent organic framework COF-B(OH).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:
Particulate matters (PMs), one of the major airborne pollutants, continue to seriously threaten human health and the environment. Here, a self-crystal-induced electret enhancement (SCIEE) strategy was developed to promote the in-situ electret effect and polarization properties of electrospun poly(L-lactic acid) (PLLA) nanofibers. The strategy specifically involved the elaborate pre-structuring of stereocomplex crystals (SCs) with uniform dimensions (∼300 nm), which were introduced into PLLA electrospinning solution as the electrets and physical cross-linking points of high density.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Guangxi Key Laboratory of Low-Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
O3-type layered oxides are considered promising cathode materials for next-generation high-energy-density sodium-ion batteries (SIBs). However, they face challenges, such as low rate capacity and poor cycling stability, which arise from structural deformation, sluggish Na diffusion kinetics, and interfacial side reactions. Herein, a synergistic substitution strategy for transitional and interstitial sites was adopted to improve the structure stability and Na diffusion kinetics of the O3-type NaNiFeMnO.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
College of Architecture & Civil Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
The rational design of microwave absorption (MA) material featuring light weight, wide absorption bandwidth, and infrared stealth property is crucial for military stealth and health protection but remains challenging. Herein, an innovative N-doped carbon nanocage-in-microcage structure with tunable carbon-coated Ni (NC/Ni(HS)) is reported via a reliable Ni-catalyzed and Ni-templated method. The hierarchically hollow structure of nanocage-in-microcage composites can optimize the impedance matching and respond to multiple reflections and scattering of incident microwaves and infrared waves.
View Article and Find Full Text PDFSmall Methods
December 2024
Key Laboratory of MEMS of the Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China.
The interfacial incompatibility between lithium phosphorus oxynitride (LiPON) and anode greatly deteriorates the performance of thin-film all-solid-state supercapacitors (ASSSCs). This article investigates oxygen plasma treatment to improve the interface. Through appropriate plasma treatment, a LiO/LiPO composite layer is formed by replacing nitrogen with oxygen at the LiPON surface owing to strong reactivity of oxygen plasma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!