Background: Deep brain stimulation (DBS) surgery is standard of care for the treatment of certain movement disorders.
Objective: We sought to characterize the spectrum of steps performed in DBS surgery, at centers around the world where this surgery is performed.
Methods: We identified the main steps in DBS surgery workflow and grouped these 19 steps into 3 phases (preoperative, operative, and postoperative). A survey tool, informed by a pilot survey, was administered internationally by trained study personnel at high- and low-volume DBS centers. Procedural components, duration, and surgeon motivational factors were assessed. Cluster analysis was used to identify procedural and behavioral clusters.
Results: One hundred eighty-five procedure workflow surveys (143 DBS centers) and 65 online surveys of surgeon motivational drivers were completed (45% response rate). Significant heterogeneity in technique, operative time, and surgeon motivational drivers was reported across centers.
Conclusions: We provide a description of the procedural steps involved in DBS surgery and the duration of these steps, based on an international survey. These data will enable individual surgeons and centers to examine their own experience relative to colleagues at other centers and in other countries. Such information could also be useful in comparing efficiencies and identifying workflow obstacles between different hospital environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000343207 | DOI Listing |
Int J Surg
December 2024
Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA.
Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy.
View Article and Find Full Text PDFNat Genet
January 2025
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Orthopedic Data Innovation Lab (ODIL), Hospital for Special Surgery (A.M.L.S., M.A.F.), Department of Radiology and Imaging, Hospital for Special Surgery Centre (E.E.X, Z.I, E.T.T, D.B.S, J.L.C)and Department of Population Health Sciences, Weill Cornell Medicine (M.A.F), New York, New York, USA.
Background And Purpose: To train and evaluate an open-source generative adversarial networks (GANs) to create synthetic lumbar spine MRI STIR volumes from T1 and T2 sequences, providing a proof-of-concept that could allow for faster MRI examinations.
Materials And Methods: 1817 MRI examinations with sagittal T1, T2, and STIR sequences were accumulated and randomly divided into training, validation, and test sets. GANs were trained to create synthetic STIR volumes using the T1 and T2 volumes as inputs, optimized using the validation set, then applied to the test set.
Pain Med
January 2025
Oxford Functional Neurosurgery Group, John Radcliffe Hospital, Oxford, United Kingdom.
Eur J Neurosci
January 2025
Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia.
Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!