Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2012.10.030 | DOI Listing |
Methods Enzymol
September 2024
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland. Electronic address:
Rieske oxygenases are known as catalysts that enable the cleavage of aromatic and aliphatic C-H bonds in structurally diverse biomolecules and recalcitrant organic environmental pollutants through substrate oxygenations and oxidative heteroatom dealkylations. Yet, the unproductive O activation, which is concomitant with the release of reactive oxygen species (ROS), is typically not taken into account when characterizing Rieske oxygenase function. Even if considered an undesired side reaction, this O uncoupling allows for studying active site perturbations, enzyme mechanisms, and how enzymes evolve as environmental microorganisms adapt their substrates to alternative carbon and energy sources.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2023
Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus 8490000, Be'er Sheva, Israel.
Diaphorobacter strain DS2 degrades 3-nitrotoluene and 2-nitrotoluene via ring oxidation with 3-nitrotoluene dioxygenase (3NTDO). In the current study, we hypothesized that 3NTDO might also be involved in the degradation of 2,4,6-trinitrotoluene (TNT), a major nitroaromatic explosive contaminant in soil and groundwater. Strain DS2 transforms TNT as a sole carbon and nitrogen source when grown on it.
View Article and Find Full Text PDFChemosphere
January 2023
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India. Electronic address:
TNT, or 2,4,6-trinitrotoluene, is a common explosive that can contaminate soil and groundwater in production sites, military training areas, and disposal locations. The compound is highly toxic; therefore, there is an urgent need to rehabilitate the impacted environments. Harnessing the microbial ability to biodegrade TNT into environmentally harmless compound(s) is one approach to remediating contaminated sites.
View Article and Find Full Text PDFACS Environ Au
September 2022
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
Oxygenations of aromatic soil and water contaminants with molecular O catalyzed by Rieske dioxygenases are frequent initial steps of biodegradation in natural and engineered environments. Many of these non-heme ferrous iron enzymes are known to be involved in contaminant metabolism, but the understanding of enzyme-substrate interactions that lead to successful biodegradation is still elusive. Here, we studied the mechanisms of O activation and substrate hydroxylation of two nitroarene dioxygenases to evaluate enzyme- and substrate-specific factors that determine the efficiency of oxygenated product formation.
View Article and Find Full Text PDFmBio
August 2021
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
sp. strain JS3051 utilizes 2,3-dichloronitrobenzene (23DCNB), a toxic anthropogenic compound, as the sole carbon, nitrogen, and energy source for growth, but the metabolic pathway and its origins are unknown. Here, we establish that a gene cluster (), encoding a Nag-like dioxygenase, is responsible for the initial oxidation of the 23DCNB molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!