To better understand the transport of contaminants in aqueous environments, we need more accurate information about heterogeneous and homogeneous nucleation of iron(III) hydroxide nanoparticles in the presence of organics. We combined synchrotron-based grazing incidence small-angle X-ray scattering (GISAXS) and SAXS and other nanoparticle and substrate surface characterization techniques to observe iron(III) (hydr)oxide [10⁻⁴ M Fe(NO₃)₃ in 10 mM NaNO₃] precipitation on quartz and on polyaspartate- and alginate-coated glass substrates and in solution (pH = 3.7 ± 0.2). Polyaspartate was determined to be the most negatively charged substrate and quartz the least; however, after 2 h, total nanoparticle volume calculations--from GISAXS--indicate that positively charged precipitation on quartz is twice that of alginate and 10 times higher than on polyaspartate, implying that electrostatics do not govern iron(III) (hydr)oxide nucleation. On the basis of contact angle measurements and surface characterization, we concluded that the degree of hydrophilicity may control heterogeneous nucleation on quartz and organic-coated substrates. The arrangement of functional groups at the substrate surface (--OH and --COOH) may also contribute. These results provide new information for elucidating the effects of polymeric organic substrate coatings on the size, volume, and location of nucleating iron hydroxides, which will help predict nanoparticle interactions in natural and engineered systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es302124g | DOI Listing |
Chemosphere
December 2024
V.V. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation. Electronic address:
Sci Total Environ
August 2024
Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
Cyanobacterial blooms have been a growing problem in water bodies and attracted attention from researcher and water companies worldwide. Different treatment methods have been researched and applied either inside water treatment plants or directly into reservoirs. We tested a combination of coagulants, polyaluminium chloride (PAC) and iron(III) chloride (FeCl), and ballasts, luvisol (LUV) and planosol (PLAN), known as the 'Floc and Sink' technique, to remove positively buoyant cyanobacteria from a tropical reservoir water.
View Article and Find Full Text PDFJ Environ Radioact
July 2024
Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, 110054, India. Electronic address:
The expansion of the nuclear industry has led to various radioactive effluents, originating from routine operations or catastrophic incidents such as those at Three Mile Island (USA), Chernobyl (Ukraine), and Fukushima (Japan). Research conducted after these events emphasizes Cesium-137 (137Cs) and iodine 131 (131I) as major contributors to harmful airborne dispersion and fallout. These isotopes infiltrate the human body via inhalation, ingestion, or wounds, posing significant health risks.
View Article and Find Full Text PDFMar Pollut Bull
May 2024
Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands.
Molecules
January 2024
Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria.
Two trinuclear oxo-centred iron(III) coordination compounds of monensic and salinomycinic acids (HL) were synthesized and their spectral properties were studied using physicochemical/thermal methods (FT-IR, TG-DTA, TG-MS, EPR, Mössbauer spectroscopy, powder XRD) and elemental analysis. The data suggested the formation of [Fe(µ-O)L(OH)] and the probable complex structures were modelled using the DFT method. The computed spectral parameters of the optimized constructs were compared to the experimentally measured ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!