Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: The plant Hygrophila auriculata (K. Schum) Heine. (Acanthaceae) is widely used in the Indian System of Medicine as "Rasayana" for treating brain and liver diseases.
Objectives: The present study evaluated the in vivo antioxidant and neuroprotective effect of aterpenoid rich fraction (TF) from Hygrophila auriculata in a rat model of transient global cerebral ischemia (tGCI).
Materials And Methods: Male Wistar rats were grouped as sham control, tGCI control, vitamin E (500 mg/kg) and TF (100 & 200 mg/kg) treated groups. Following 7 days of drug administration, animals were subjected to tGCI by permanent occlusion of both vertebral and transient occlusion of carotid arteries for 10 min followed by reperfusion. The neuroprotective effect was assessed by tGCI induced neurological, sensory motor deficit in rats. Brain antioxidants such as superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) were investigated. Further, a histopathological examination was done in CA1 hippocampus.
Results: tGCI induction resulted in an increase in beam balance score (5.1), number of entries in open field (131) and a decrease in time spent in rotorod (47 s). In contrast, TF treatment resulted in a significant decrease in (p < 0.01) beam balance score (2.9), number of entries (67) and increased time spent in rotorod (63.25 s). There was also a significant (p < 0.001) decrease in brain SOD and GSH with an increase in MDA. TF treatment resulted in restoration of antioxidants and protection of hippocampal CA1 neurons against tGCI insult.
Conclusion: It is concluded that TF from Hygrophila auriculata shows neuroprotective potential against tGCI induced oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/13880209.2012.716851 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!