Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3' splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495951 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048084 | PLOS |
Epigenetics Chromatin
January 2025
Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
Background: Alzheimer's disease (AD) hallmarks are amyloid plaques and tau tangles. APOE and TREM2 are the strongest genetic risk factors for AD. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized to play a central role in amyloid beta clearance and microglia activation in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Homi Bhabha National Institute, Mumbai, Maharashtra, India.
Background: Receptor Tyrosine kinase-mediated signaling is indispensable for the cell's normal functioning, the perturbation of which leads to disease conditions. The altered expression and activity of several Receptor Tyrosine kinases (RTKs) are known to regulate the pathophysiology of Alzheimer's disease (AD). However, the mechanistic details remain illusive.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
Background: Several studies have indicated sex-specific genetic risk for Alzheimer's disease (AD), but these were centered on non-Hispanic White individuals of European ancestry. We sought to identify sex-specific genetic variants for AD in non-Hispanic and Hispanic subjects of admixed African ancestry.
Method: Participants were ages 60+, of African ancestry (≥25%), and diagnosed as cases or controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!