Retroviruses, like all enveloped viruses, must incorporate viral glycoproteins to form infectious particles. Interactions between the glycoprotein cytoplasmic tail and the matrix domain of Gag are thought to direct recruitment of glycoproteins to native virions for many retroviruses. However, retroviruses can also incorporate glycoproteins from other viruses to form infectious virions known as pseudotyped particles. The glycoprotein murine leukemia virus (MLV) Env can readily form pseudotyped particles with many retroviruses, suggesting a generic mechanism for recruitment. Here, we sought to identify which components of Gag, particularly the matrix domain, contribute to recruitment of MLV Env into retroviral particles. Unexpectedly, we discovered that the matrix domain of HIV-1 Gag is dispensable for generic recruitment, since it could be replaced with a nonviral membrane-binding domain without blocking active incorporation of MLV Env into HIV virions. However, MLV Env preferentially assembles with MLV virions. When MLV and HIV particles are produced from the same cell, MLV Env is packaged almost exclusively by MLV particles, thus preventing incorporation into HIV particles. Surprisingly, the matrix domain of MLV Gag is not required for this selectivity, since MLV Gag containing the matrix domain from HIV is still able to outcompete HIV particles for MLV Env. Although MLV Gag is sufficient for selective incorporation to occur, no single Gag domain dictates the selectivity. Our findings indicate that Env recruitment is more complex than previously believed and that Gag assembly/budding sites have fundamental properties that affect glycoprotein incorporation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554149 | PMC |
http://dx.doi.org/10.1128/JVI.02604-12 | DOI Listing |
J Virol
November 2024
Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA.
The Env protein of murine leukemia virus (MLV) is the prototype of a large clade of retroviral fusogens, collectively known as gamma-type Envs. Gamma-type Envs are found in retroviruses and endogenous retroviruses (ERVs) representing a broad range of vertebrate hosts. All gamma-type Envs contain a highly conserved stretch of 26-residues in the transmembrane subunit (TM) comprising two motifs, a putative immunosuppressive domain (ISD) and a CXCC motif.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan.
Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance.
View Article and Find Full Text PDFmBio
October 2024
Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
Unlabelled: Guanylate-binding protein (GBP) 5 is an interferon-inducible cellular factor with broad anti-viral activity. Recently, GBP5 has been shown to antagonize the glycoproteins of a number of enveloped viruses, in part by disrupting the host enzyme furin. Here we show that GBP5 strongly impairs the infectivity of virus particles bearing not only viral glycoproteins that depend on furin cleavage for infectivity-the envelope (Env) glycoproteins of HIV-1 and murine leukemia virus and the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-but also viral glycoproteins that do not depend on furin cleavage: vesicular stomatitis virus glycoprotein and SARS-CoV S.
View Article and Find Full Text PDFNat Commun
July 2023
The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA.
The host proteins SERINC3 and SERINC5 are HIV-1 restriction factors that reduce infectivity when incorporated into the viral envelope. The HIV-1 accessory protein Nef abrogates incorporation of SERINCs via binding to intracellular loop 4 (ICL4). Here, we determine cryoEM maps of full-length human SERINC3 and an ICL4 deletion construct, which reveal that hSERINC3 is comprised of two α-helical bundles connected by a ~ 40-residue, highly tilted, "crossmember" helix.
View Article and Find Full Text PDFViruses
January 2023
Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
After the onset of the AIDS pandemic, HIV-1 (genus ) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the , and genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, ), murine leukemia virus (MLV, ) and human T-cell leukemia viruses (HTLV-I and HTLV-II, ) encode Envs that are structurally and functionally distinct from HIV Env.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!