Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Compensatory mutations contribute to the appearance of the oseltamivir resistance substitution H274Y in the neuraminidase (NA) gene of H1N1 influenza viruses. Here, we describe a high-throughput screening method utilizing error-prone PCR and next-generation sequencing to comprehensively screen NA genes for H274Y compensatory mutations. We found four mutations that can either fully (R194G, E214D) or partially (L250P, F239Y) compensate for the fitness deficiency of the H274Y mutant. The compensatory effect of E214D is applicable in both seasonal influenza virus strain A/New Caledonia/20/1999 and 2009 pandemic swine influenza virus strain A/California/04/2009. The technique described here has the potential to profile a gene at the single-nucleotide level to comprehend the dynamics of mutation space and fitness and thus offers prediction power for emerging mutant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554097 | PMC |
http://dx.doi.org/10.1128/JVI.01658-12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!