The possibility to cryopreserve cells allows for wide opportunities of flexible handling of cell cultures from different sponge species. Primmorphs model, a multicellular 3D aggregate formed by dissociated sponge cells, is considered one of the best approaches to establish sponge cell culture but, in spite of the available protocols for freezing sponge cells, there is no information regarding the ability of the latter to form primmorphs after thawing. In the present work, we demonstrate that, after a freezing and thawing cycle using dissociated Petrosia ficiformis cells as a model, cells viability was high but it was not possible to obtain primmorphs. The same protocol for cryopreservation was then used to directly freeze primmorphs. In this second case, after thawing, viability and the cellular proliferative level were similar to unfrozen standard primmorphs. Spiculogenesis in thawed primmorphs was evaluated by quantifying the silicatein gene expression level and by assaying the silica amount in the newly formed spicules, then compared with the correspondent values obtained in standard unfrozen primmorphs. Results indicate that the freezing cycle does not affect the spiculogenesis rate. Finally, the expression level of heat shock protein 70, a well-known stress marker, was assayed and the results showed no differences between frozen and unfrozen samples. These findings are likely to promote relevant improvements in sponge cell culture technique, allowing for a worldwide exchange of living biological material, paving the way for cell banking of Porifera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10126-012-9490-z | DOI Listing |
Asia Pac J Clin Oncol
January 2025
Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.
View Article and Find Full Text PDFRev Esp Enferm Dig
January 2025
Hepatobiliary Pancreatic Surgery, Jiaozhou Branch of Shanghai East Hospital.
Background: Long non-coding RNAs (lncRNAs) are major research factors in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used for diagnosing and prognosticating cholangiocarcinoma (CHOL).
Methods: The ENROCI project evaluated the OIP5-AS1 expression in CHOL samples and confirmed it using RT-qPCR.
J Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Emergency, Nantong Haimen District People's Hospital, No. 1201 Peking Road, Haimen District, Nantong, 226100, China.
Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.
Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.
Sci Rep
January 2025
Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330000, Jiangxi Province, P.R. China.
Circular RNAs (circRNAs) are widely involved in diverse biological processes of cancers. Nonetheless, the potential function of hsa_circ_0008305 in hepatocellular carcinoma (HCC) remains largely unknown. This study aims to elucidate the role and underlying mechanism of hsa_circ_0008305 in HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!