Molecular design of organic superbases, azacalix[3](2,6)pyridines: catalysts for 1,2- and 1,4-additions.

J Org Chem

Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan.

Published: December 2012

The molecular design, characteristics, and catalytic activity of macrocyclic amino compounds, azacalix[3](2,6)pyridine derivatives, were studied. The introduction of an electron-donating group on the pyridine moiety and bridging amino phenyl group enabled the enhancement of the basicity of azacalix[3](2,6)pyridine up to pK(BH(+)) = 29.5 in CD(3)CN. These derivatives were shown to be efficient catalysts for 1,4-addition reactions of nitroalkanes or primary alcohols to α,β-unsaturated carbonyl compounds and 1,2-addition reactions of nitroalkanes to aromatic aldehydes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo3017428DOI Listing

Publication Analysis

Top Keywords

molecular design
8
reactions nitroalkanes
8
design organic
4
organic superbases
4
superbases azacalix[3]26pyridines
4
azacalix[3]26pyridines catalysts
4
catalysts 12-
4
12- 14-additions
4
14-additions molecular
4
design characteristics
4

Similar Publications

Nonacademic predictors of China medical licensing examination.

BMC Med Educ

January 2025

Department of Radiology and Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.

Background: National Medical Licensing Examination (NMLE) is the entrance exam for medical practice in China, and its general medical knowledge test (GMKT) evaluates abilities of medical students to comprehensively apply medical knowledge to clinical practice. This study aimed to identify nonacademic predictors of GMKT performance, which would benefit medical schools in designing appropriate strategies and techniques to facilitate the transition from medical students to qualified medical practitioners.

Methods: In 1202 medical students, we conducted the deletion-substitution-addition (DSA) and structural equation model (SEM) analyses to identify nonacademic predictors of GMKT performance from 98 candidate variables including early life events, physical conditions, psychological and personality assessments, cognitive abilities, and socioeconomic conditions.

View Article and Find Full Text PDF

Background: Rhabdomyolysis is frequently associated with acute kidney injury (AKI). Due to the nephrotoxic properties of myoglobin, its rapid removal is relevant. If kidney replacement therapy (KRT) is necessary for AKI, a procedure with effective myoglobin elimination should be preferred.

View Article and Find Full Text PDF

Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.

Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.

View Article and Find Full Text PDF

Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.

View Article and Find Full Text PDF

Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

Nat Commun

January 2025

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!