Signaling by the serine and threonine kinase Akt (also known as protein kinase B), a pathway that is common to all eukaryotic cells, is central to cell survival, proliferation, and gene induction. We sought to elucidate the mechanisms underlying regulation of the kinase activity of Akt in the immune system. We found that the four-transmembrane protein CD37 was essential for B cell survival and long-lived protective immunity. CD37-deficient (Cd37(-/-)) mice had reduced numbers of immunoglobulin G (IgG)-secreting plasma cells in lymphoid organs compared to those in wild-type mice, which we attributed to increased apoptosis of plasma cells in the germinal centers of the spleen, areas in which B cells proliferate and are selected. CD37 was required for the survival of IgG-secreting plasma cells in response to binding of vascular cell adhesion molecule 1 to the α(4)β(1) integrin. Impaired α(4)β(1) integrin-dependent Akt signaling in Cd37(-/-) IgG-secreting plasma cells was the underlying cause responsible for impaired cell survival. CD37 was required for the mobility and clustering of α(4)β(1) integrins in the plasma membrane, thus regulating the membrane distribution of α(4)β(1) integrin necessary for activation of the Akt survival pathway in the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.2003113DOI Listing

Publication Analysis

Top Keywords

cell survival
16
plasma cells
16
igg-secreting plasma
12
immune system
8
cd37 required
8
α4β1 integrin
8
plasma
6
survival
6
cells
6
α4β1
5

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!