Association of postburn fatty acids and triglycerides with clinical outcome in severely burned children.

J Clin Endocrinol Metab

Shriners Hospitals for Children and Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA.

Published: January 2013

Context: Free fatty acids (FFAs) and triglycerides (TGs) are altered postburn, but whether these alterations are associated with postburn outcomes is not clear.

Objective: The aim of the present study was to analyze lipid metabolic profiles in pediatric burn patients and to correlate these profiles with patient outcomes and hospital courses.

Design And Setting: We conducted a prospective cohort study at an academic pediatric hospital burn center.

Patients: Our study included 219 pediatric burn patients.

Main Outcome Measures: Patients were stratified according to their plasma TG and FFA levels. Main patient outcomes, such as postburn morbidity and mortality, and clinical metabolic markers were analyzed.

Results: All groups were similar in demographics and injury characteristics. Patients with elevated TGs had significantly worse clinical outcomes associated with increased acute-phase protein synthesis indicating augmented inflammation and hypermetabolism, whereas increased FFAs did not seem to profoundly alter postburn outcomes.

Conclusions: Elevated TGs, but not FFAs, postburn are associated with worsened organ function and clinical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537101PMC
http://dx.doi.org/10.1210/jc.2012-2599DOI Listing

Publication Analysis

Top Keywords

fatty acids
8
pediatric burn
8
patient outcomes
8
elevated tgs
8
clinical outcomes
8
postburn
5
outcomes
5
association postburn
4
postburn fatty
4
acids triglycerides
4

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

University of Georgia, College of Pharmacy, Athens, GA, USA.

Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.

View Article and Find Full Text PDF

Background: Spousal care partners to people with dementia (PWD) have a higher rate of depression and anxiety when compared to similar age controls. Previous studies have suggested a role of gut microbiota in the pathophysiology of neuropsychiatric symptoms and Alzheimer's disease (AD). Thus, our study aims to: (1) determine the presence and severity of depression and anxiety in care partners of PWD, and (2) determine the concentrations of short chain fatty acids (SCFA), which are mainly produced by gut microbiota and are important in mediating gut microbiota effects, in the blood of care partners of PWD.

View Article and Find Full Text PDF

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Int J Biol Sci

January 2025

Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.

View Article and Find Full Text PDF

Deficiency of Epithelial PIEZO1 Alleviates Liver Steatosis Induced by High-Fat Diet in Mice.

Int J Biol Sci

January 2025

Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!