No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer's "inherent expertise bias," a type of experimental bias in which the observer's life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50-100 ms, and we conclude that the Broca-Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch's law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision-although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system's temporal response function will result in significant power savings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511764 | PMC |
http://dx.doi.org/10.1073/pnas.1213170109 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Agricultural Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
Drought is one of the most detrimental natural calamities to the economy. Despite its significant consequences, the evolution from meteorological to agricultural and hydrological droughts still needs to be explored. A thorough investigation was carried out in India's eastern hills and plateau region to determine the extent of drought's impact through indices.
View Article and Find Full Text PDFPain
January 2025
Department of Psychology, McGill University, Montreal, Canada.
Music has long been recognized as a noninvasive and cost-effective means of reducing pain. However, the selection of music for pain relief often relies on intuition rather than on a scientific understanding of the impact of basic musical attributes on pain perception. This study examines how a fundamental element of music-tempo-affects its pain-relieving properties.
View Article and Find Full Text PDFMed Phys
January 2025
Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA.
Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.
View Article and Find Full Text PDFElife
January 2025
Department of Cognitive Psychology, University of Hamburg, Hamburg, Germany.
When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
January 2025
Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.
Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!