AI Article Synopsis

  • Cinchona alkaloids acted as Lewis base catalysts in the reaction described.
  • The reaction involved a [4+2] cyclization of α,β-unsaturated acyl chlorides with specific electron-deficient alkenes.
  • This process resulted in the formation of spirocarbocyclic oxindoles, which are unique cyclic compounds.

Article Abstract

Cinchona alkaloids were used as Lewis base catalysts in the title reaction. The [4+2] cyclization of α,β-unsaturated acyl chlorides with electron-deficient alkenes derived from oxindole gave the corresponding spirocarbocyclic oxindoles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201207405DOI Listing

Publication Analysis

Top Keywords

[4+2] cyclization
8
cyclization αβ-unsaturated
8
αβ-unsaturated acyl
8
acyl chlorides
8
spirocarbocyclic oxindoles
8
catalytic [4+2]
4
chlorides 3-alkylenyloxindoles
4
3-alkylenyloxindoles highly
4
highly diastereo-
4
diastereo- enantioselective
4

Similar Publications

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.

View Article and Find Full Text PDF

Metal-Assisted Synthesis of Diverse Porphyrinoids by Cyclization of an N-Confused Thia-Pentapyrrane.

Chem Asian J

January 2025

East China University of Science and Technology, Institute of Fine Chemicals, Meilong Road, 200237, Shanghai, CHINA.

Oxidation of thia-pentapyrrane S-P4 with terminal β-linked pyrrole and thiophene units in the presence of various metal ions has been found to afford distinct porphyrinoids. Specifically, N-confused thiasapphyrin (1), Cu(III) norrole (2), neo-confused phlorin (3), and p-benzinorrole (4) were obtained, when S-P4 was oxidized with p-chloranil in acetonitrile in the presence of Ni2+, Cu2+, Cd2+, and Co2+, respectively. The structures of 1-4 have been clearly elucidated by NMR spectroscopy, HRMS, and X-ray crystal diffraction (for 2-4).

View Article and Find Full Text PDF

The Facile Solid-Phase Synthesis of Thiazolo-Pyrimidinone Derivatives.

Molecules

January 2025

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea.

A thiazolo-pyrimidinone derivative library was developed through a facile solid-phase synthesis method. For the reaction, the thiazolo[4,5-]pyrimidin-7(6)-one structure was synthesized through efficient Thorpe-Ziegler and cyclization reactions. The thiazolo[4,5-]pyrimidin-7(6)-one derivative library with a diversity of three had a total of four synthesis steps and 57 compounds.

View Article and Find Full Text PDF

Herein a novel and robust methodology to spiroimidazolidinones has been developed under a mild reaction. The reaction of (Z)-2-azido-3-phenylacrylic acids , aldehydes , amines , isocyanides , and isocyanides produced regioselectively spiroimidazolidinones in 71-88% yields via a sequential Ugi 4CR/Pd(0) catalyzed azide-isocyanide coupling/cyclization/rearrangement/hydroxylation reaction. Furthermore, the easily accessible starting materials, high bond-forming efficiency, and broad substituent tolerance make this strategy useful in synthetic and medicinal chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!