Manufacturing complex composites and structures using incompatible materials is central to next-generation technologies. In photonics, silica offers passivity, low loss and robustness, making it the ideal material platform for optical transport. However, these properties partly stem from the high-temperature processing conditions necessary for silica waveguide fabrication, restricting the functionalisation of waveguides to robust inorganic dopants. This means for many sensor and active device applications, large numbers of materials are excluded. These include many organic and carbon systems such as dyes and diamond. Here we propose using intermolecular forces to bind nanoparticles together at room temperature and demonstrate the room-temperature self-assembly of long microwires (length ~7 cm, width ~10 μm) with and without rhodamine B. Further we report on mixed self-assembly of silica and single-photon-emitting nitrogen-vacancy-containing diamond nanoparticles, opening up a new direction in material science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms2182 | DOI Listing |
Phys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
A series of four original phosphine-free thioether-NHC manganese complexes have been synthesised and fully characterized. These complexes have been applied as efficient catalysts for the hydrogenation of alkenes and ketones at room temperature, with low catalyst loadings (TON up to 900).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 1219 Zhongguan West Road, 315201, Ningbo, CHINA.
Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!