Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca(2+) handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca(2+) signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499085 | PMC |
http://dx.doi.org/10.3791/4198 | DOI Listing |
JCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.
Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.
Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).
Esophagus
January 2025
Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Background: Herein, we aimed to examine the relationship between sarcopenia, neutrophil-lymphocyte ratio (NLR), Charlson comorbidity index (CCI), and prognostic nutritional index (PNI) in patients with superficial esophageal carcinoma who underwent definitive chemoradiotherapy (CRT).
Methods: We retrospectively analyzed 100 patients (87 males) diagnosed with cT1N0M0 esophageal squamous cell carcinoma. The included patients underwent CRT as an initial treatment.
Nucleic Acids Res
January 2025
Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China.
RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.
View Article and Find Full Text PDFFacial Plast Surg Aesthet Med
January 2025
Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.
Selective neurectomy (SN) typically leaves cut nerve endings to be either free-floating or buried in facial muscles. Regenerative peripheral nerve interfaces (RPNIs) use autologous skeletal muscle grafts to provide a nonfacial muscle target for reinnervation. To evaluate the effectiveness of RPNI surgery with SN for improving postoperative facial function through botulinum toxin use and facial movement metrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!