Using the stopped-flow circular dichroism (SFCD) technique, we investigate the kinetics of the pH-induced folding and unfolding process of the DNA i-motif. The results show that the molecule can fold or unfold on a time scale of 100 ms when the solution pH is changed. It is also found that the folding and unfolding rates strongly depend on the solution pH. On the basis of quantitative data, we propose theoretical models to decipher the folding and unfolding kinetics. Our models suggest that the cooperativity of protons is crucial for both the folding and unfolding process. In the unfolding process, the cooperative neutralization of two protons (out of the total six protons in the i-motif molecule) is the only rate-limiting step. In the folding process, there exists a critical step in which three protons bind cooperatively to the DNA strand. These results offer an in-depth understanding of the folding and unfolding kinetics of the DNA i-motif and may give precise guidance for constructing novel nanodevices based on the DNA i-motif.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la303851a | DOI Listing |
Nat Metab
January 2025
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India. Electronic address:
This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.
Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.
Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!