High-pressure electrical resistance measurements have been performed on single crystal Ba(0.5)Sr(0.5)Fe(2)As(2) platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium. The resistance measurements show evidence of pressure-induced superconductivity with an onset transition temperature at ∼31 K and zero resistance at ∼22 K for a pressure of 3.3 GPa. The transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above 12 GPa. The present results provide experimental evidence that a solid solution of two 122-type materials, i.e., Ba(1-x)Sr(x)Fe(2)As(2) (0 < x < 1), can also exhibit superconductivity under high pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/49/495702DOI Listing

Publication Analysis

Top Keywords

pressure-induced superconductivity
8
resistance measurements
8
transition temperature
8
superconductivity ba05sr05fe2as2
4
ba05sr05fe2as2 high-pressure
4
high-pressure electrical
4
electrical resistance
4
measurements performed
4
performed single
4
single crystal
4

Similar Publications

Concurrent Pressure-Induced Superconductivity and Photoconductivity Transitions in PbSeTe.

Adv Mater

December 2024

Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.

Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.

View Article and Find Full Text PDF

Pressure-Dependent Electronic Superlattice in the Kagome Superconductor CsV_{3}Sb_{5}.

Phys Rev Lett

December 2024

Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.

We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7  GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).

View Article and Find Full Text PDF
Article Synopsis
  • ZrTe is a potential topological insulator (TI), yet its topological phase and relationship to its Dirac semimetallic state remain debated in the scientific community.
  • Researchers used a semiclassical multicarrier transport (MCT) model to study the magnetotransport of ZrTe nanodevices under high pressure, up to 2 GPa, revealing important temperature-dependent behavior.
  • Their findings support the idea that the band gap closes and reopens with increasing pressure, indicating a phase transition from weak to strong TI, which aligns with both theoretical calculations and previous studies indicating ZrTe behaves as a weak TI under normal conditions.
View Article and Find Full Text PDF
Article Synopsis
  • The Ruddlesden-Popper bilayer nickelate LaNiO has been linked to high-temperature superconductivity (HTSC) under high pressure (over 14 GPa), but lacks clear diamagnetic signals due to low superconducting volume fractions.
  • Research on Pr-doped LaPrNiO polycrystalline samples shows that Pr substitutions help create a nearly pure bilayer structure, mitigating the intergrowth of competing phases.
  • At pressures above 11 GPa, a transition occurs, with HTSC developing further, achieving notable superconducting transition temperatures and confirming bulk HTSC through significant diamagnetic signals below 75 K at over 15 GPa.
View Article and Find Full Text PDF

Dominant Charge Density Order in TaTe_{4}.

Phys Rev Lett

September 2024

Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

Electronic orders such as charge density wave (CDW) and superconductivity raise exotic physics and phenomena as evidenced in recently discovered kagome superconductors and transition metal chalcogenides. In most materials, CDW induces a weak, perturbative effect, manifested as shadow bands, minigaps, resistivity kinks, etc. Here we demonstrate a unique example-transition metal tetratellurides TaTe_{4}, in which the CDW order dominates the electronic structure and transport properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!