The structure of a series of activated carbons prepared from anthracite by chemical activation has been studied using wide-angle x-ray scattering, molecular dynamics and Raman spectroscopy. The BET surface areas of the investigated samples are in the range 1500-3430 m(2) g(-1) and the average pore sizes vary from 0.75 to 1.35 nm. The diffraction measurements were carried out to a maximum value of the scattering vector K(max) = 22 Å(-1). The obtained diffraction data have been converted to a real space representation in the form of the pair correlation function. The structure of the studied samples consists of one or two graphite-like layers, stacked without spatial correlations. The size of the ordered layer region is approximately 24 Å. The atomic arrangement within an individual layer has been described in terms of paracrystalline ordering, in which lattice distortions are propagated proportionally to the square root of inter-atomic distances. The paracrystalline structure has been simulated by introducing the Stone-Thrower-Wales, mono-vacancy and di-vacancy defects, randomly distributed in the network. These defects lead to the formation of a defected network with the presence of non-hexagonal rings in which distortion of the structure extends outside of a defect region. Computer generated structural models have been relaxed at room temperature using the reactive empirical bond order potential for intra-layer interactions and the Lennard-Jones potential for inter-layer interactions. For such generated models the structure factors and the pair correlation functions were computed. A good agreement between the simulation results and the experimental data in both reciprocal and real space provides evidence for the correctness of the proposed models. The Raman data support the validity of these models. Porosity of the activated anthracites is discussed in relation to their defective structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/24/49/495303 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.
View Article and Find Full Text PDFPhytomedicine
January 2025
College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:
Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
The thermocatalytic conversion of CO with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.
Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!