In this work, we report on how salt concentration and cation species affect DNA translocation in voltage-biased silicon nitride nanopores. The translocation of dsDNA in linear, circular, and supercoiled forms was measured in salt solutions containing KCl, NaCl, and MgCl(2) . As the KCl concentrations were decreased from 1 to 0.1 M, the time taken by a DNA molecule to pass through a nanopore was shorter and the frequency of the translocation in a folded configuration was reduced, suggesting an increase in DNA electrophoretic mobility and DNA persistence length. When the salt concentration was kept at 1 M, but replacing K(+) with Na(+) , longer DNA translocation times (t(d) ) were observed. The addition of low concentrations of MgCl(2) with 1.6 M KCl resulted in longer t(d) and an increased frequency of supercoiled DNA molecules in a branched form. These observations were consistent with the greater counterion charge screening ability of Na(+) and Mg(2+) as compared to K(+) . In addition, we demonstrated that dsDNA molecules indeed translocated through a ∼10 nm nanopore by PCR amplification and gel electrophoresis. We also compared the dependence of DNA mobility and conformation on KCl concentration and cation species measured at single molecule level by silicon nitride nanopores with existing bulk-based experimental results and theoretical predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514626 | PMC |
http://dx.doi.org/10.1002/elps.201200165 | DOI Listing |
Mol Oncol
January 2025
Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany.
Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.
View Article and Find Full Text PDFBackground: Inclusions of TAR DNA binding protein of 43kDa (TDP-43) constitute the main characteristic pathology in the majority (∼97%) of amyotrophic lateral sclerosis (ALS) cases and approximately 50% of patients with frontotemporal lobar degeneration (FTLD). TDP-43 is a nuclear RNA binding protein; however, in disease, it becomes hyperphosphorylated and/or insoluble, hindering its nuclear function in maintaining RNA homeostasis. Importantly, the incidence of TDP-43 proteinopathy extends to aging brains (LATE) and may be concomitant with Alzheimer's disease (AD) neuropathological changes (LATE/AD) in up to 70% of AD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Munich, Bavaria, Germany.
Background: Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN levels in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!