Essential role of phosphines in organocatalytic β-boration reaction.

Org Biomol Chem

Dpt. Química Física i Iorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, 43007 Tarragona, Spain.

Published: December 2012

AI Article Synopsis

  • Phosphines can enhance the organocatalytic β-boration reaction of α,β-unsaturated carbonyl compounds, reducing the need for traditional Brönsted bases.
  • The interaction between phosphines and the substrate leads to the formation of a zwitterionic phosphonium enolate.
  • This enolate can interact with methanol and B(2)pin(2) to create an ion pair that is crucial for the catalytic process.

Article Abstract

The use of phosphines to assist the organocatalytic β-boration reaction of α,β-unsaturated carbonyl compounds has been demonstrated with a selected number of substrates. The new method eludes the use of Brönsted bases to promote the catalytic active species and PR(3) becomes essential to interact with the substrate resulting in the formation of a zwitterionic phosphonium enolate. This species can further deprotonate MeOH when B(2)pin(2) is present forming eventually the ion pair [α-(H),β-(PR(3))-ketone](+)[B(2)pin(2)·MeO](-) that is responsible for the catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2ob26899jDOI Listing

Publication Analysis

Top Keywords

organocatalytic β-boration
8
β-boration reaction
8
essential role
4
role phosphines
4
phosphines organocatalytic
4
reaction phosphines
4
phosphines assist
4
assist organocatalytic
4
reaction αβ-unsaturated
4
αβ-unsaturated carbonyl
4

Similar Publications

A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.

View Article and Find Full Text PDF

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.

View Article and Find Full Text PDF

Organocatalytic Enantioselective Arylation to Access Densely Aryl-Substituted P-Stereogenic Centers.

Org Lett

December 2024

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

Although methods for synthesizing chiral phosphorus scaffolds are available, the potential of this molecular chirality remains largely unexplored. Herein, we present a remote desymmetrization of prochiral biaryl phosphine oxides through an organocatalytic asymmetric arylation. This metal-free approach enables the efficient synthesis of a wide range of densely functionalized P(V)-stereogenic compounds with good to excellent yields and satisfactory enantioselectivities.

View Article and Find Full Text PDF

Organocatalytic SuFEx click reactions of SOF.

Org Biomol Chem

December 2024

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.

An organocatalytic method for the SuFEx click reaction of gaseous SOF is described. Different organic bases such as DBU, TBD, triethylamine and Hünig's base can efficiently catalyze the SuFEx of SOF with various phenols to produce aryl fluorosulfates in 61-97% yields. Under the same conditions, pyridone, pyrazolone and amines can also react with SOF to afford the corresponding heteroaryl fluorosulfates or sulfamoyl fluorides in good yields.

View Article and Find Full Text PDF

The chiral amine catalyzed diastereo- and enantioselective [3 + 2] cycloaddition between isatin-derived azomethine ylides and α,β-unsaturated aldehydes was successfully carried out to afford spiro[oxindole-3,2'-pyrrolidine]s. It was anticipated that the formation of azomethine ylides occurred the cycloreversion of dispirooxindole-imidazolidines, which are precursor imine homodimers, in aqueous solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!