Physical stability is critical for any therapeutic protein's efficacy and economic viability. No reliable theory exists to predict stability de novo, and modeling aggregation is challenging as this phenomenon can involve orientation effects, unfolding, and the rearrangement of noncovalent bonds inter- and intramolecularly in a complex sequence of poorly understood events. Despite this complexity, the simple observation of protein concentration-dependent diffusivity in stable, low ionic-strength solutions can provide valuable information about a protein's propensity to aggregate at higher salt concentrations and over longer times. We recently verified this notion using two model proteins, and others have shown that this strategy may be applicable to antibodies as well. Here, we expand our previous study to a monoclonal human immunoglobulin G1 antibody and discuss both merits and limitations of stability assessments based on the diffusional virial coefficient k(D). We find this parameter to be a good predictor of relative protein stability in solutions of different chaotropic salts, and a telling heuristic for the effect of kosmotropes. Both temperature and glycosylation are seen to have a strong influence on k(D), and we examine how these factors affect stability assessments. Protein unfolding is monitored with a fluorescence assay to assist in interpreting the observed aggregation rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23363 | DOI Listing |
Nat Commun
December 2024
Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China.
CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.
View Article and Find Full Text PDFNat Commun
December 2024
College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!