The lack of an effective licensed vaccine remains one of the most significant gaps in the portfolio of tools being developed to eliminate Plasmodium falciparum malaria. Vaccines targeting erythrocyte invasion - an essential step for both parasite development and malaria pathogenesis - have faced the particular challenge of genetic diversity. Immunity-driven balancing selection pressure on parasite invasion proteins often results in the presence of multiple, antigenically distinct, variants within a population, leading to variant-specific immune responses. Such variation makes it difficult to design a vaccine that covers the full range of diversity, and could potentially facilitate the evolution of vaccine-resistant parasite strains. In this study, we investigate the effect of genetic diversity on invasion inhibition by antibodies to a high priority P. falciparum invasion candidate antigen, P. falciparum Reticulocyte Binding Protein Homologue 5 (PfRH5). Previous work has shown that virally delivered PfRH5 can induce antibodies that protect against a wide range of genetic variants. Here, we show that a full-length recombinant PfRH5 protein expressed in mammalian cells is biochemically active, as judged by saturable binding to its receptor, basigin, and is able to induce antibodies that strongly inhibit P. falciparum growth and invasion. Whole genome sequencing of 290 clinical P. falciparum isolates from across the world identifies only five non-synonymous PfRH5 SNPs that are present at frequencies of 10% or more in at least one geographical region. Antibodies raised against the 3D7 variant of PfRH5 were able to inhibit nine different P. falciparum strains, which between them included all of the five most common PfRH5 SNPs in this dataset, with no evidence for strain-specific immunity. We conclude that protein-based PfRH5 vaccines are an urgent priority for human efficacy trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538003 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2012.10.106 | DOI Listing |
Front Immunol
December 2024
Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
medRxiv
October 2024
G4 Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
NPJ Vaccines
October 2024
G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
Vaccines to the Plasmodium falciparum reticulocyte binding-like protein homologue 5 (PfRH5) target the blood-stage of the parasite life cycle. PfRH5 has the potential to trigger the production of strain-transcendent antibodies and has proven its efficacy both in pre-clinical and early clinical studies. Vaccine-induced monoclonal antibodies (mAbs) to PfRH5 showed promising outcomes against cultured P.
View Article and Find Full Text PDFEMBO Mol Med
October 2024
Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
There is an urgent need for improved malaria vaccine immunogens. Invasion of erythrocytes by Plasmodium falciparum is essential for its life cycle, preceding symptoms of disease and parasite transmission. Antibodies which target PfRH5 are highly effective at preventing erythrocyte invasion and the most potent growth-inhibitory antibodies bind a single epitope.
View Article and Find Full Text PDFVaccines (Basel)
July 2024
Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
A vaccine protecting against malaria caused by is urgently needed. The blood-stage invasion complex PCRCR consists of the five malarial proteins PfPTRAMP, PfCSS, PfRipr, PfCyRPA, and PfRH5. As each subcomponent represents an essential and highly conserved antigen, PCRCR is considered a promising vaccine target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!