Cytotoxicity of newly developed ortho MTA root-end filling materials.

J Endod

Department of Conservative Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea.

Published: December 2012

Introduction: Various materials have been advocated for use as root-end filling materials. The purpose of the present in vitro study was to compare the cytotoxicity of 4 root-end filling materials: glass ionomer cement (GIC; Fuji II, GC Corp, Tokyo, Japan), reinforced zinc oxide-eugenol cement (IRM; Dentsply Tulsa Dental, Tulsa, OK), and 2 types of mineral trioxide aggregate.

Methods: This study used MG-63 cells derived from a human osteosarcoma. To quantitatively evaluate the cytotoxicity of test materials, the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used. The cells were exposed to the extracts and incubated. Cell viability was recorded by measuring the optical density of each test well in reference to controls. Each specimen was examined by scanning electron microscopy for the observation of cell morphology.

Results: The XTT assay showed that the cell viability of ProRoot MTA (Dentsply Tulsa Dental) was higher than that of GIC and Ortho MTA (BioMTA, Seoul, Republic of Korea) at all time points. IRM showed significantly lower cell viability than the other groups. The scanning electron microscopic analysis revealed that elongated, dense, and almost confluent cells were observed in the cultures of GIC, Ortho MTA, and ProRoot MTA specimens. In contrast, cells on the surface of IRM were rounded in shape, and the numbers and the density of the cells were smaller than that in the other groups.

Conclusions: ProRoot MTA and GIC showed good biocompatibility in this study. However, Ortho MTA showed lower biocompatibility compared with ProRoot MTA and GIC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2012.09.004DOI Listing

Publication Analysis

Top Keywords

ortho mta
16
proroot mta
16
root-end filling
12
filling materials
12
cell viability
12
mta
8
dentsply tulsa
8
tulsa dental
8
xtt assay
8
scanning electron
8

Similar Publications

Background And Objectives: Mineral Trioxide Aggregate (MTA) is one of the main retrograde filling materials that is used today as a root end filling material and perforation repair material. This study was conducted with the aim of investigating the antibacterial and antifungal properties of four types of bio-ceramic materials, AGM MTA, Ortho MTA, Pro root MTA and Cem cement for oral and dental health.

Methods: In this study, the antibacterial activity of four types of bio-ceramic materials against two bacterial strains of Enterococcus faecalis (ATTC 29212), Escherichia coli (ATTC 35318) and antifungal activity against Candida albicans (ATTC 10231) were investigated using the well diffusion method.

View Article and Find Full Text PDF

New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity.

View Article and Find Full Text PDF

Radiographic measurements for the assessment of metatarsus adductus (MTA) have a broad range of interpretation without a consensus regarding surgical indications. The "Plumbline" (PL) radiographic assessment method helps identify MTA and determines if physical space is available to align the first metatarsal to the longitudinal foot axis without the need to realign the lesser metatarsals. Forty-five neutral weight-bearing anterior-posterior (AP) radiographs of patients scheduled for surgical intervention for isolated hallux valgus (HV) or combined MTA/HV deformities were reviewed.

View Article and Find Full Text PDF

This study aimed to evaluate the dislodgement resistance and structural changes of different mineral trioxide aggregate cements (MTA) like Pro-Root MTA, Ortho MTA, and Retro MTA after exposure to sodium hypochlorite (NaOCl), NaOCl-Ethylenediaminetetraacetic acid (EDTA), 1-hydroxyethylidene-1, 1-bisphosphonate (Dual Rinse HEDP), and NaOCl-Maleic acid (MA). The root canal spaces of 150 dentine slices were obturated using tricalcium silicate cements and divided into 3 groups (n = 50): Group1: ProRoot MTA, Group2: Retro MTA, and Group3: Ortho MTA. The samples in each group were further subdivided into four experimental (n = 10) and one control groups (n = 10): 2.

View Article and Find Full Text PDF

Lamb dips of twenty lines in the P, Q, and R branches of the ν + ν + ν vibrational band of CH, in the spectral window of 7125-7230 cm, have been measured using an upgraded comb-calibrated frequency-stabilized cavity ring-down spectrometer, designed for extensive sub-Doppler measurements. Due to the large number of carefully executed Lamb-dip experiments, and to the extrapolation of absolute frequencies to zero pressure in each case, the combined average uncertainty of the measured line-center positions is 15 kHz (5 × 10 cm) with a 2-σ confidence level. Selection of the twenty lines was based on the theory of spectroscopic networks (SN), ensuring that a large number of transitions, measured previously by precision-spectroscopy investigations, could be connected to the and principal components of the SN of CH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!