Voltage gated ion channels (VGC) make possible the frequency coding of arterial pressure and the neurotransmission of this information along myelinated and unmyelinated fiber pathways. Although many of the same VGC isoforms are expressed in both fiber types, it is the relative expression of each that defines the unique discharge properties of myelinated A-type and unmyelinated C-type baroreceptors. For example, the fast inward Na⁺ current is a major determinant of the action potential threshold and the regenerative transmembrane current needed to sustain repetitive discharge. In A-type baroreceptors the TTX-sensitive Na(v)1.7 VGC contributes to the whole cell Na⁺ current. Na(v)1.7 is expressed at a lower density in C-type neurons and in conjunction with TTX-insensitive Na(v)1.8 and Na(v)1.9 VGC. As a result, action potentials of A-type neurons have firing thresholds that are 15-20 mV more negative and upstroke velocities that are 5-10 times faster than unmyelinated C-type neurons. A more depolarized threshold in conjunction with a broader complement of non-inactivating K(V) VGC subtypes produces C-type action potentials that are 3-4 times longer in duration than A-type neurons and at markedly lower levels of cell excitability. Unmyelinated baroreceptors also express KCa1.1 which provides approximately 25% of the total outward K⁺ current. KCa1.1 plays a critically important role in shaping the action potential profile of C-type neurons and strongly impacts neuronal excitability. A-type neurons do not functionally express the KCa1.1 channel despite having a whole cell Ca(V) current quite similar to that of C-type neurons. As a result, A-type neurons do not have the frequency-dependent braking forces of KCa1.1. Lack of a KCa current and only a limited complement of non-inactivating K(V) VGC in addition to a hyperpolarization activated HCN1 current that is nearly 10 times larger than in C-type neurons leads to elevated levels of discharge in A-type neurons, a hallmark of myelinated baroreceptors. Interestingly, HCN2 and HCN4 expression levels are comparable in both fiber types. Collectively, such apportion of VGC constrains the neural coding of myelinated A-type baroreceptors to low threshold, high frequency, high fidelity discharge but with a limited capacity for neuromodulation of afferent bandwidth. Unmyelinated C-type baroreceptors require greater depolarizing forces for spike initiation and have a low frequency discharge profile that is often poorly correlated with the physiological stimulus. But the complement of VGC in C-type neurons provides far greater capacity for neuromodulation of cell excitability than can be obtained from A-type baroreceptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.autneu.2012.10.014 | DOI Listing |
J Integr Neurosci
December 2024
Department of Neurology, Hainan West Central Hospital, 571799 Danzhou, Hainan, China.
Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.
Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.
Adv Sci (Weinh)
January 2025
Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China.
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by the accumulation and deposition of amyloid-β (Aβ) aggregates in the brain. Despite a wealth of research on the toxicity of Aβ and its role in synaptic damage, the mechanisms facilitating Aβ clearance are not yet fully understood. However, microglia, the primary immune cells of the central nervous system, are known to maintain homeostasis through the phagocytic clearance of protein aggregates and cellular debris.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2025
Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States.
Vagal sensory afferents carrying information from the gastrointestinal tract (GI) terminate in the nucleus of the solitary tract (NTS). Different subpopulations of NTS neurons then relay this information throughout the brain. Cholecystokinin (CCK) is a satiety peptide that activates vagal afferents in the GI.
View Article and Find Full Text PDFCell Rep
November 2024
Department of Life Sciences, Imperial College, SW7 2AZ London, UK. Electronic address:
Am J Physiol Gastrointest Liver Physiol
January 2025
Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!