A compartmental neuronal model was used to show that increased compartmental leak conductances distal to the site of excitatory postsynaptic potential (EPSP) generation have little effect on EPSP amplitude but decrease half-width markedly. Using intracellular recording from cat hindlimb motoneurons, reductions of composite Ia EPSP amplitude by up to 70% unaccompanied by reductions in half-width were seen following conditioning stimuli to hindlimb nerves. Appropriate condition-test intervals produced large reductions in EPSP amplitude that were unaccompanied by detectable increases in motoneuron conductance. These observations suggest that presynaptic inhibition and not increased postsynaptic motoneuron conductances is responsible for large EPSP amplitude reductions following conditioning stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(90)90548-nDOI Listing

Publication Analysis

Top Keywords

epsp amplitude
20
large reductions
8
reductions composite
8
conditioning stimulation
8
increased postsynaptic
8
epsp
6
amplitude
5
composite monosynaptic
4
monosynaptic epsp
4
amplitude conditioning
4

Similar Publications

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.

View Article and Find Full Text PDF

The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress.

View Article and Find Full Text PDF

Estrogens and progesterone can have rapid effects on neuronal function and can modify the use of spatial navigation strategies dependent upon the prefrontal cortex, striatum, and hippocampus. Here, we assessed the effects of 17β-estradiol (E2), progesterone, and its metabolite allopregnanolone, on evoked excitatory postsynaptic potentials in the infralimbic region of the female rat prefrontal cortex. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of layer I were first characterized by recording responses at multiple depths between the cortical surface and the underlying white matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!