Deep-ultraviolet (UV) resonance raman spectroscopy as a tool for quality control of formulated therapeutic proteins.

Appl Spectrosc

Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, US Food and Drug Administration, Saint Louis, MO 63101, USA.

Published: November 2012

A deep-ultraviolet (UV) Raman spectrometer with excitation source tunable from 193 to 210 nm has been built and characterized. The dispersion of the spectrometer over the entire range was measured and described theoretically. The relative sensitivity of the spectrometer was estimated using the integrated intensity ratio of two Raman bands of cyclohexane. Resonance Raman spectra of three formulated insulin products were measured and compared. A band-targeted entropy minimization algorithm was applied to the collected spectra for mixture analysis of insulin products. We conclude that it is feasible to develop robust qualitative methods for quality control of protein-based formulated drug using DUVRR spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1366/11-06572DOI Listing

Publication Analysis

Top Keywords

resonance raman
8
quality control
8
insulin products
8
deep-ultraviolet resonance
4
raman
4
raman spectroscopy
4
spectroscopy tool
4
tool quality
4
control formulated
4
formulated therapeutic
4

Similar Publications

In this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.

View Article and Find Full Text PDF

We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.

View Article and Find Full Text PDF

Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.

View Article and Find Full Text PDF

Hypohalites are commonly generated in biological systems, mostly with functions related to defense and immune system response. These hypohalites can bind to metal centers and are known for their strong oxidizing properties that play crucial roles in various biological processes. Herein, we report the synthesis, characterization and reactivity of novel biomimetic Ru(III)-hypochlorite complexes and focus the work on the electronic effects associated with the incorporation of methyl groups in a pentadentate ligand framework in an asymmetric fashion.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!