Bayesian three-dimensional reconstruction of toothed whale trajectories: passive acoustics assisted with visual and tagging measurements.

J Acoust Soc Am

Université de Toulouse, INP, UPS, CNRS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France.

Published: November 2012

The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed whale trajectories from a series of echolocation signals. Localization by using passive acoustic data (time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the whale when diving and resurfacing) and tag information (movement statistics). The efficiency of the Bayesian method is compared to the standard minimum mean squared error statistical approach by comparing the reconstruction results of 48 simulated sperm whale (Physeter macrocephalus) trajectories. The use of the advanced Bayesian method reduces bias (standard deviation) with respect to the standard method up to a factor of 8.9 (13.6). The author provides open-source software which is functional with acoustic data which would be collected in the field from any three-dimensional receptor array design. This approach renews passive acoustics as a valuable tool to study the underwater behavior of toothed whales.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4757740DOI Listing

Publication Analysis

Top Keywords

bayesian method
12
toothed whale
8
whale trajectories
8
passive acoustics
8
assisted visual
8
acoustic data
8
bayesian
4
bayesian three-dimensional
4
three-dimensional reconstruction
4
reconstruction toothed
4

Similar Publications

Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study.

View Article and Find Full Text PDF

Data-driven discovery and parameter estimation of mathematical models in biological pattern formation.

PLoS Comput Biol

January 2025

Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.

Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters.

View Article and Find Full Text PDF

Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis.

View Article and Find Full Text PDF

Assessing groundwater contamination risk is a critical aspect of preventing and managing groundwater pollution. There was a research gap in the investigation of uncertainties in modeling groundwater contamination risks in aquifers. This study addresses this gap using Bayesian Model Averaging (BMA), with a novel focus on risk exposures from geogenic contaminants, such as lead (Pb).

View Article and Find Full Text PDF

Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between image quality and radiation exposure is critical, as reducing the administered dose results in a lower signal-to-noise ratio (SNR) and information loss, which may significantly affect clinical diagnosis. Deep learning (DL) algorithms have recently made significant progress in low-dose (LD) PET reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!