Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with (99m)Tc and (18)F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484419PMC

Publication Analysis

Top Keywords

dual tracer
8
imaging
8
tracer imaging
8
spect pet
8
pet probes
8
computed tomography
8
content gathered
8
spect
5
pet
5
imaging spect
4

Similar Publications

Fusion of FDG and FMZ PET Reduces False Positive in Predicting Epileptogenic Zone.

AJNR Am J Neuroradiol

January 2025

From the School of Biomedical Engineering (B.C., H.H., J.L., S.Y., Y.C., J.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurosurgery (S.J., J.H., L.C.), and PET Center (W.B.), Huashan Hospital, Fudan University, Shanghai, China.

Background And Purpose: Epilepsy, a globally prevalent neurological disorder, necessitates precise identification of the epileptogenic zone (EZ) for effective surgical management. While the individual utilities of FDG PET and FMZ PET have been demonstrated, their combined efficacy in localizing the epileptogenic zone remains underexplored. We aim to improve the non-invasive prediction of epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) by combining FDG PET and FMZ PET with statistical feature extraction and machine learning.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Self-supervised parametric map estimation for multiplexed PET with a deep image prior.

Phys Med Biol

January 2025

The Division of Imaging Sciences and Biomedical Engineering, King's College London, 5th Floor Becket House, London, SE1 7EH, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Multiplexed positron emission tomography (mPET) imaging allows simultaneous observation of physiological and pathological information from multiple tracers in a single PET scan. Although supervised deep learning has demonstrated superior performance in mPET image separation compared to purely model-based methods, acquiring large amounts of paired single-tracer data and multi-tracer data for training poses a practical challenge and needs extended scan durations for patients. In addition, the generalisation ability of the supervised learning framework is a concern, as the patient being scanned and their tracer kinetics may potentially fall outside the training distribution.

View Article and Find Full Text PDF

A new projector, Orthogonal-Distance Ray-tracer Varying-Full Width at Half Maximum (OD-RT-VF), was developed to model a shift-variant elliptical point-spread function (PSF) response to improve the image quality of a preclinical dual-rotation PET system. Approach: The OD-RT-VF projector models different FWHM values of the PSF in multiple directions, using half-height and half-width tube-of-response (ToR) values. The OD-RT-VF method's performance was evaluated against the original OD-RT method and a ToR model with constant response.

View Article and Find Full Text PDF

Preclinical Study of a Dual-Target Molecular Probe Labeled with Ga Targeting SSTR2 and FAP.

Pharmaceuticals (Basel)

December 2024

Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing 100853, China.

Objective: Currently, Ga-labeled somatostatin analogs (SSAs) are the most commonly used imaging agents for patients with neuroendocrine tumors (NETs) in clinical practice, demonstrating good results in tumor diagnosis. For applications in peptide receptor radionuclide therapy (PRRT), targeted drugs should have high tumor uptake and prolonged tumor retention time. To enhance the uptake and retention of tracers in NETs, our goal is to design a Ga-labeled heterodimer for optimizing pharmacokinetics and assess whether this form is more efficacious than its monomeric equivalents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!