Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494013PMC
http://dx.doi.org/10.1038/srep00826DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
20
resonance microscopy
16
human cerebellum
12
spatial resolution
12
phase tomography
12
x-ray phase
8
microscopy histology
8
computed tomography
8
magnetic
5
resonance
5

Similar Publications

Importance: Enhanced breast cancer screening with magnetic resonance imaging (MRI) is recommended to women with elevated risk of breast cancer, yet uptake of screening remains unclear after genetic testing.

Objective: To evaluate uptake of MRI after genetic results disclosure and counseling.

Design, Setting, And Participants: This multicenter cohort study was conducted at the University of Southern California Norris Cancer Hospital, the Los Angeles General Medical Center, and the Stanford University Cancer Institute.

View Article and Find Full Text PDF

Background And Objectives: This systematic review aims to synthesize the current literature on the association between chemotherapy (CTX) and chemotherapy-related cognitive impairment (CRCI) with functional and structural brain alterations in patients with noncentral nervous system cancers.

Methods: A comprehensive search of the PubMed/MEDLINE, Web of Science, and Embase databases was conducted, and results were reported following preferred reporting items for systematic review and meta-analyses guidelines. Data on study design, comparison cohort characteristics, patient demographics, cancer type, CTX agents, neuroimaging methods, structural and functional connectivity (FC) changes, and cognitive/psychological assessments in adult patients were extracted and reported.

View Article and Find Full Text PDF

Background And Objectives: Brain energy deficiency occurs at the early stage of Huntington disease (HD). Triheptanoin, a drug that targets the Krebs cycle, can restore a normal brain energetic profile in patients with HD. In this study, we aimed at assessing its efficacy on clinical and neuroimaging structural measures in HD.

View Article and Find Full Text PDF

Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.

View Article and Find Full Text PDF

Background: Intervertebral disc (IVD) degeneration is the main cause of neck pain. Although conventional magnetic resonance imaging can detect morphological changes in intervertebral disc degeneration, it cannot provide accurate and objective evaluations. Magnetic resonance diffusion tensor imaging (DTI) reflects the microstructural changes in tissues by describing the diffusion of water molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!