Preparing offspring for a dangerous world: potential costs of being wrong.

PLoS One

Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.

Published: May 2013

Adaptive maternal responses to stressful environments before young are born can follow two non-exclusive pathways: either the mother reduces current investment in favor of future investment, or influences offspring growth and development in order to fit offspring phenotype to the stressful environment. Inducing such developmental cues, however, may be risky if the environment changes meanwhile, resulting in maladapted offspring. Here we test the effects of a predator-induced maternal effect in a predator-free postnatal environment. We manipulated perceived predation-risk for breeding female great tits by exposing them to stuffed models of either a predatory bird or a non-predatory control. Offspring were raised either in an environment matching the maternal one by exchanging whole broods within a maternal treatment group, or in a mismatching environment by exchanging broods among the maternal treatments. Offspring growth depended on the matching of the two environments. While for offspring originating from control treated mothers environmental mismatch did not significantly change growth, offspring of mothers under increased perceived predation risk grew faster and larger in matching conditions. Offspring of predator treated mothers fledged about one day later when growing under mismatching conditions. This suggests costs paid by the offspring if mothers predict environmental conditions wrongly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492257PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048840PLOS

Publication Analysis

Top Keywords

offspring
9
offspring growth
8
exchanging broods
8
broods maternal
8
treated mothers
8
offspring mothers
8
maternal
5
environment
5
preparing offspring
4
offspring dangerous
4

Similar Publications

Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.

View Article and Find Full Text PDF

Background: Cognitive impairment and attention deficit disorder have been on the rise among generations in recent times. A significant portion of the brain involved in learning and cognition is the hippocampus. Its development begins in utero till weaning.

View Article and Find Full Text PDF

Background: The lactation period is a crucial period where the nutritional status and the mother's environment influence milk production, impacting organ differentiation, function, and structure in the baby's body.

Aim: The study aimed to determine the impact of providing lactating rats with quail egg supplements enriched with marine macroalgae on their physiological condition (blood cells, lipids, blood glucose, antioxidant activity, and prolactin hormone levels) and the growth of their offspring.

Methods: The study involved 25 lactating Sprague Dawley white rats aged 3 months old and weighing approximately 200 g divided into five treatment groups thus; T0 as the control, T1 with quail eggs enriched with commercial feed, T2 with quail eggs enriched with 3% of marine macroalgae, T3 with quail eggs enriched with 4% of marine macroalgae, and T4 with quail eggs enriched with 5% of marine macroalgae, which received one quail egg for 21 days.

View Article and Find Full Text PDF

Background: is a known cause of a zoonotic infectious illness called toxocariasis. Parathenic hosts are important as they can transmit larvae 2 (L) through direct transmission. Scanning electron microscope (SEM) techniques are needed to provide a three-dimensional image of each stage of larvae.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.

Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!