CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify βII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and βII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca(2+) channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca(2+) channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca(2+)-dependent remodeling of the CHL1-βII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531758PMC
http://dx.doi.org/10.1074/jbc.M112.394973DOI Listing

Publication Analysis

Top Keywords

chl1
14
lipid raft-dependent
12
endocytosis chl1
12
chl1 endocytosis
12
raft-dependent endocytosis
8
βii spectrin
8
complex chl1
8
lipid rafts
8
voltage-dependent ca2+
8
ca2+ channels
8

Similar Publications

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

Despite numerous studies on fetal therapy for myelomeningoceles (MMC), the pathophysiology of this malformation remains poorly understood. This study aimed to analyze the biochemical profile and proteome of amniotic fluid (AF) supernatants from MMC fetuses to explore the prenatal pathophysiology. Biochemical analysis of 61 AF samples from MMC fetuses was compared with 45 healthy fetuses' samples.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a hard-to-treat human pathogen for which new antimicrobial agents are urgently needed. P. aeruginosa is known for forming biofilms, a complex aggregate of bacteria embedded in a self-generated protective matrix that enhance its resistance to antibiotics and the immune system.

View Article and Find Full Text PDF

Role of SbNRT1.1B in cadmium accumulation is attributed to nitrate uptake and glutathione-dependent phytochelatins biosynthesis.

J Hazard Mater

November 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China. Electronic address:

Phytoremediation of cadmium (Cd)-polluted soil by using sweet sorghum displays a tremendous potential as it is a fast-growing, high biomass and Cd tolerant energy plant. Previous study has demonstrated SbNRT1.1B expression change is in accordance with enhanced Cd accumulation by external nitrate supply in sweet sorghum.

View Article and Find Full Text PDF

Human lifespan is shaped by both genetic and environmental exposures and their interaction. To enable precision health, it is essential to understand how genetic variants contribute to earlier death or prolonged survival. In this study, we tested the association of common genetic variants and the burden of rare non-synonymous variants in a survival analysis, using age-at-death (N = 35,551, median [min, max] = 72.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!