A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the measurement of ultrasonic beams transmitted through a penetrable acoustic cone. | LitMetric

Modeling the measurement of ultrasonic beams transmitted through a penetrable acoustic cone.

IEEE Trans Ultrason Ferroelectr Freq Control

Department of Mechanical Engineering, Imperial College London, London, UK.

Published: October 2012

The interaction of ultrasonic beams with conical scatterers is governed by a combination of diffraction effects occurring at the aperture of the acoustic source/receiver and refraction through the cone. Accordingly, the outcome of a transmission experiment is dependent upon the many physical parameters characterizing the transducers and the cone. We develop a simplified model which describes the deflection caused by refraction through the cone using ray theory, then uses Huygens' summation to calculate the transducer response from this deflection. The model's accuracy is verified by comparison to simulated data. The model shows that transmission occurs in two different regimes, depending on the parameters of the particular problem. In the first regime, the cone alters the spatial phase distribution of the incident field along the receiver's aperture, whereas its amplitude remains almost unchanged. Because the receiver integrates the field over the aperture, the phasing affects the measurements via constructive and destructive interference. In the second regime, the phase alteration is accompanied by large amplitude variations around an average value that is significantly smaller than the amplitude observed in the first regime. The approximation will aid the design of ultrasound tomography arrays, such as those being developed for breast cancer detection.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2012.2454DOI Listing

Publication Analysis

Top Keywords

ultrasonic beams
8
refraction cone
8
cone
5
modeling measurement
4
measurement ultrasonic
4
beams transmitted
4
transmitted penetrable
4
penetrable acoustic
4
acoustic cone
4
cone interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!