A polyimide-etalon thin film structure for all-optical high-frequency ultrasound transduction.

IEEE Trans Ultrason Ferroelectr Freq Control

Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA.

Published: October 2012

In this work, we have designed, fabricated, and tested an all-optical ultrasound transducer by integrating a photoabsorptive polyimide thin film into a Fabry-Pérot (etalon) high-frequency receiver. A 5-ns UV pulse was used for thermoelastic ultrasound generation in the polyimide film, and the transmission had a maximum amplitude of 4.3 MPa centered at 27 MHz with a fractional bandwidth of 107%. The device attained a noise-equivalent pressure of 1.3 Pa/√Hz in receive-only mode. When used in pulse-echo mode, the -6-dB upper cutoff frequency of the transmit/receive response reached 47 MHz. Basic imaging capabilities were also investigated by scanning the near-infrared probe beam across the device to create a 2 × 2 mm synthetic aperture. The imaging of targets placed at depths of 1.8 and 5.2 mm yielded estimates of 71 and 145 μm, respectively, for the lateral resolution and 35 and 38 μm, respectively, for the axial resolution. Finally, a design concept for a forward-viewing intravascular imager is presented that entails the coupling of light to a rotating, linear array of optical fibers on top of which are deposited polyimide-etalon transducers. Such a design would allow for a flexible and compact high-resolution imager well-suited for intravascular applications, such as guidance of treatment in the case of chronic total occlusion.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2012.2450DOI Listing

Publication Analysis

Top Keywords

thin film
8
polyimide-etalon thin
4
film structure
4
structure all-optical
4
all-optical high-frequency
4
high-frequency ultrasound
4
ultrasound transduction
4
transduction work
4
work designed
4
designed fabricated
4

Similar Publications

Interfacial Strain-Driven Large Topological Hall Effects in Supermalloy Thin Films with Noncoplanar Spin Textures.

ACS Appl Mater Interfaces

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.

View Article and Find Full Text PDF

Digital Mini-LED Lighting Using Organic Thin-Film Transistors Reaching over 100,000 Nits of Luminance.

Nanomaterials (Basel)

January 2025

Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

This paper demonstrates the use of organic thin-film transistors (OTFTs) to drive active digital mini light-emitting diode (mini-LED) backlights, aiming to achieve exceptional display performance. Our findings reveal that OTFTs can effectively power mini-LED backlights, reaching brightness levels exceeding 100,000 nits. This approach not only enhances image quality but also improves energy efficiency.

View Article and Find Full Text PDF

High-Performance Hydrogen Sensing at Room Temperature via Nb-Doped Titanium Oxide Thin Films Fabricated by Micro-Arc Oxidation.

Nanomaterials (Basel)

January 2025

Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.

Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.

View Article and Find Full Text PDF

Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film.

J Funct Biomater

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment.

View Article and Find Full Text PDF

This study explored the batch membrane filtration of 40% ethanol extracts from spent lavender, containing valuable compounds like rosmarinic acid, caffeic acid, and luteolin, using a polyamide-urea thin film composite X201 membrane. Conducted at room temperature and 20 bar transmembrane pressure, the process demonstrated high efficiency, with rejection rates exceeding 98% for global antioxidant activity and 93-100% for absolute concentrations of the target components. During concentration, the permeate flux declined from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!