This paper investigates active vibration control of a beam under a moving mass using a pointwise fiber Bragg grating (FBG) displacement sensing system. Dynamic responses of the proposed FBG displacement sensor are demodulated with an FBG filter and verified with measurement results obtained from a noncontact fiber-optic displacement sensor. System identification of the beam is first performed with a piezoceramic actuator and positive position feedback (PPF) controllers are designed based on the identified results. Then, transient responses of the beam under a moving mass with different moving conditions are measured using the FBG displacement sensor. A high-speed camera is used to detect the speed of the moving mass for further discussions about its influence on the transient response. Finally, active vibration control of the beam under the moving mass is performed and fast Fourier transform (FFT) as well as short-time Fourier transform (STFT) are employed to demonstrate control performances. For the case in which a rolling steel ball is directed from a slide to the beam to generate the moving mass, reductions of the vibration up to 50% and 60% are achieved in the frequency domain for the first and second modes of the beam, respectively. Based on the control experiments on the smallscale beam, results in this work show that the proposed FBG displacement sensing system can be used in research on the moving mass problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2012.2440 | DOI Listing |
Materials (Basel)
January 2025
Mechanical and Manufacturing Department, Mondragon University, 20500 Mondragon, Spain.
This study investigates fixed and moving mesh methodologies for modeling liquid metal-free surface deformation during the induction melting process. The numerical method employs robust coupling of magnetic fields with the hydrodynamics of the turbulent stirring of liquid metal. Free surface tracking is implemented using the fixed mesh level set (LS) and the moving mesh arbitrary Lagrangian-Eulerian (ALE) formulation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico.
The energy positions and wave function shapes of the ground and excited states of impurities, including resonance states, are studied using the expansion of the impurity wave function in basis functions. The structures under study are rectangular GaAs/AlGaAs quantum wells with four different widths. In all cases, the impurity binding energy (relative to the corresponding sub-band) has a maximum at or near the center of the quantum well, decreases as the heterointerface is approached, and apparently has a limit of 0 if the impurity moves deeper into the barrier.
View Article and Find Full Text PDFChaos
January 2025
Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland.
This paper examines the circumstances under which a one-degree-of-freedom approximate system can be employed to predict the dynamics of a cantilever beam comprising an elastic element with a significant mass and a concentrated mass embedded at its end, impacting a moving rigid base. A reference model of the system was constructed using the finite element method, and an approximate lowest-order model was proposed that could be useful in engineering practice for rapidly ascertaining the dynamics of the system, particularly for predicting both periodic and chaotic motions. The number of finite elements in the reference model was determined based on the calculated values of natural frequencies, which were found to correspond to the values of natural frequencies derived from the application of analytical formulas.
View Article and Find Full Text PDFHealth Phys
January 2025
Oregon State University, Corvallis, OR.
A former uranium recovery facility located in northwestern New Mexico currently serves as a uranium mill tailings site undergoing reclamation and decommissioning. High velocity winds are common in the area, causing soil erosion via aeolian processes. Strong winds may carry soil for several kilometers, which is redeposited downwind.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
Objectives: Our objective was to evaluate the impact of COVID-19 on the proportion of past-year HIV testing in Peru.
Methods: Utilizing data from the National Demographic and Health Survey of Peru from 2014 to 2022, we conducted an interrupted time series analysis. The proportion of past-year HIV testing per quarter of each year was considered our unit of analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!