AI Article Synopsis

  • Medium spiny neurons (MSNs) in the mouse nucleus accumbens receive neural signals from the cortex, thalamus, and hippocampus.
  • The inputs from the hippocampus are notably weaker for indirect MSNs, with connections occurring at small spines on the far ends of their dendrites.
  • To activate these weaker inputs and affect the output of the nucleus accumbens, indirect MSNs require an additional depolarization step to reach the threshold for action potentials.

Article Abstract

We found that medium spiny neurons (MSNs) in both the direct and indirect pathways of the mouse nucleus accumbens (NAc) receive inputs from the cortex, thalamus and hippocampus. However, hippocampal inputs were much weaker onto indirect MSNs, where they contacted small spines located in the distal dendrites. This selective targeting means that these inputs must be gated by subthreshold depolarization to trigger action potentials and influence NAc output.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986679PMC
http://dx.doi.org/10.1038/nn.3254DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
8
subcellular connectivity
4
connectivity underlies
4
underlies pathway-specific
4
pathway-specific signaling
4
signaling nucleus
4
accumbens medium
4
medium spiny
4
spiny neurons
4
neurons msns
4

Similar Publications

Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine.

View Article and Find Full Text PDF

Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.

View Article and Find Full Text PDF

Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction.

Front Psychiatry

January 2025

Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.

Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex.

View Article and Find Full Text PDF

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!